EXRAMDEDLLBLOR BASIC ..

-..-»—----..---.._------
T a

tor the tD!n;l Ertqndod Cnlnr Bﬁq&ﬁ PRS- 'ﬂ Lotar Computer

fc) 1984 by Timo Delbaurgo

CONEGMTE
FHES RN

Rage
SECTION $ - Introductian
- e L i e --:-L‘-J-. -
Chapter 1. A ahort Sum,ary . 2 .,
Lhapter 2¢ Adnopd, .t K‘I'WDQ”‘ : y .
SEC'XEN B araphllewx Commands
‘Chapter 3. Meet E:xpan.dred BASIC,. 4
Chapter 2. . Improved Loons, . 5
Chapter 5. . i Procedures 9
Chapter &. Errer Trapeire .. S V]
Chapier 7. New Sounds ard Chlﬂuﬁ.ﬁI, 14
Chapter 8, Scrolling 17
Chapter 9. A Miscellany,. . 19
SECTION 2 - Ed‘t/He!per fquand-
chapter 10. . Kene 2%
€Chapter 1. Printing Alds . iz
SECTIUN “ - Q‘Stn'on qumapd§ .
Chapter t2. 7he g fcraan 28
“Craptes L3. BArinting and G wiliag 25
SECTION 4 - Extra Cormpndf.snd Spnple 70 ogr28ee, -
L L D Ly o n o o e g e a e
Chapter '14.° Extrag Sonvandy ., 31
Chaptenr £S. Samgls. Programa, 34
APPENDICES
Appendix &.°" PRLITR, RNt L TRt -n I8 s
Apperdbr B. . Keywords. . IRy
‘Apnendﬁqﬂﬁ.qj, Error Codem a8 - -
ap ngndlx) SampFe-Ernvarlapes . . a1 .
Appencix B. Alphanuperds GodR,s 4%
Append!x F. Syntax A8 %
Append!x Gn Koyhgarqyobdrlly-, a5

Expanded

Zolor
Microsoft's Extended Color BASIC lor ~Disk

BASIC

SECTION @ ~ INTRODUCTION
FE 3690309033 3 3 3 R XA

Chapter §. 'A Short Summary

is a language designed to:be 3dded" nn,;o
BASIC. if you havg .

disk) . Although Extended BASIC (s a pretty powerful !angq;g,,tt‘i

is deficient

these deficlencies.

in & number of respectsi Expanded BASIC makes, 9good. .
The new features of Expanded BASIC:-ihglade: .

Printing text in all graphlc modes and colors,
A special 5ix24 sized-mcreen for PMODEQ,
Scrolling of any section of any screen in any direction,

Extra cclors

!'n a new mode,

Borders +or the text screen,
Extra graphic pages,

Sound effects,

REPEAT...UMTIL loops,
Muiitiline IF,,.THEN...ELSE statements,
Procedures as a better alternative to. subroutines,

l.ocal variables,

Full! ON-ERROR implementation,

Breax disabling,

Autoline numbering,
Cn-screen copying,
User-deflnable printer widths,

Single key entry of most BASIC words,

and finally,

The ability to execute strings as commands.

Function keys

Chapter 2. About this Manual

The purpose of this manual is to guide you in the application
of Expanded Color BASIC., !t assumes a knowledge of Microsoft's
BASIC . 1f you are not familiar with that, you are first advised
to read the Radio Shack Manuals, “Getting Started with Color
BASIC*" and "Going Ahead with Extended BASIC“, before attempting
to astart on Expanded BASIC.

The following terms will be used throughout this manual:
1) Command. This instructs the computer to perform something.
e .9, PRINT, INPUT, SOUND, GOTO etc. are all
commands.
2) Function . This {8 much like a command except that the
computer supplies an answer. .
e .g. SIN, LOG, MIDs, LEN, RND etc. are all
functions.
3) Number. This is simply a number!
e.9. 1, 12029, -,734 etc. are all numbers.
4) Numeric wvariable. This uses a group of letters to represent
a number.
e.g9. X, 22, ACTIVITY etc. are all variables.
8) Numeric function. This returns a result which is a number.
e.g9., SIN, ATN, INT, INSTR, LEN etc. are all
numeric functions,

6) Operator. This is one of the set +, -, ¥, /, ~, AND, OR and
NOT. PR
7} Numeric expression . This is either a number, numeric

variable, numeric function or a mixture thereof.

e.g. 3, X+Y, SIN(2)~INT(F/2)%#LOG(T~5), LEN(AS) etc.
are all numeric expressions.
8) String constant., This is a seguence of characters within
quotation marks.

e.g. “HELP®*, °*This {3 a constant® are string
constants.
9) String variable, This a group of letters (suffixed by =%}
which represents a string.

. e.g. A%, L1%, GRAPHS® etc. are all string variables.

19) String function. This is a function that returns a string
result.

e.g. MID$, LEFTS, RIGHTS, INKEYS, HEX$, STR$ etc .
are string functions.
11) String expression., This is either a string constant, string
variable, string function or a mixture thereof,

e.g, "HELLO®, MIDS(AS,2,3)+LEFTS(EXS, INT(S/2)) are
string expressions.

The following abbreviations recur throughout @
1> EXP. Expanded Color BASIC.

2> EXPTAPE. Expanded Color BASIC system tape.
3> EXPDISK. Expanded Color BASIC system disk.
4> CoCo#i. TRS-80 Color Computer 1,

5> CoCoM2. 7TRS-89 Color Computer 2.

SECTION t - GRAPHIC/TEXT COMMANDS
E s e S R e e s e e R

Chapter 3 - Meet Expanded BASIC

To load EXP, firstly awitch on your computer. IF IT IS ALREADY
ON , SWITCH IT OFF AND TURN IT ON AGAIN. Obey the following
instruct{ons exactly as described!:

I+ you have disk
1) Insert EXPDISK into drive &.
2) If you have a CoCo#Hl then skip to step 4.
3) Enter RUN"R". When "R" is fully run, the following message
should appear on the screen:
DISK EXTENDED COLOR BASIC 1.9
COPYRIGHT (C) 1982 BY TANDY
UNDER LICENSE FROM MICROSOFT
4) Enter RUN"G" . When the program has fully run the following
message should appear on the PMODE4 graphic screen:
DISK EXPANDED COLOR BASIC 1.3
COPYRIGHT 1984 BY T.DELBOURGO
INCLUDES GRAPHIC/TEXT COMMANDS

1 you have tape
1) Put EXPTAPE into tape recorder.
2) Position tape to beginning of "R" program. {Look at the
counter numbers on the label). .
3) Enter CLOAD and press <(PLAY>. When the '0OK®' prompt reappears
press (STOP>.
4) Enter RUN and preass <PLAY>. When the +following message
appears, press (STOP)>: !
EXTENDED COLOR BASIC 1.9
COPYRIGHT (C) 1988 BY TANDY
UNDER LICENSE FROM MICROSOFT
3) Position tape to beginning of "G" program.
4) Enter CLOAD and press <PLAY>, When the 'OK' prompt appears
press (STOP>, enter RUN and press <(PLAY> again.
7) After the following message appears, press (STOP)>:
EXPANDED COLOR BASIC 1.3
COPYRIGHT 1984 BY T.DELBOURGO
INCLUDES GRAPHIC/TEXT COMMANDS

EXP is now loaded. At this point, stored in memory are: Color
BASIC 1.1, Extended Color BASIC 1.8 and, if you have disk, Disk
Extended Color BASIC 1.9. This applies regardless of what ROM
memory your computer began with.

Text {is being written on the graphic screen at this stage.
Enter TEXTON and you will find yourself back on the text screen.
(Note that TEXTON clears the text screen)., To get back to the
graphic screen enter TEXTOFF. (TEXTOFF clears the graphic

screen) . Enter CLS and you will find that the graphic screen
goes clear, Enter PCLS and the graphic screen will also clear ,
but , as well, the cursor will stay pd. Press (SHIFT>/<¥> to go

{nto the lowercase mode and type in a few characters. Notice
that true lower-case appears -- not reverse video upper-case!

Preas (SHIFT>/<¥> again to return to the uppercase mode.

Go into PMODE! by entering PMODEl. You may change the color of
the text by using the COLOR command. Enter COLOR4,2 and you
will see red text on a yellow background. Go into color-set 1
by entering SCREEN1,!1 . Now you wWill find orange text on a cyan
background. Enter COLORS,8 to get white text on an orange
background . Type CLS and the screen will clear to orange (the
background color). Enter CLS? and the screen will <clear to
magenta., Practise changing color-sets, modes and colors.

You will scon notice that in different modes, the size of the
text varies., In fact, in PMODEs @ and 1 the screen size for
text 1Is 16 across and 8 down. In PMODEs 2 and 3 the screen size
is 16 by 1&6. In PMODE4 it is 32 by 14. PRINT@ on the graphic
screen is fully implemented in EXP. Look at the PRINTR sheets
in Appendix A to work out the PRINTR@ positions,

We haven't yet changed graphic pages. Try doing so by entering
PMODEZ ,2 . Type anything and press <ENTER)>. Then enter PMODE®,1
. Enter PMODEZ,2 again and you will +find that your text is
still on that page.

Small text .

Get back {into PMODE4 ,1 by entering PMODE4 ,1 . The PMODE4
graphic screen is very special because, with EXP, one can
change the screen size +from 32 by 16 to 51 by 24. Obey the
follaowing instructions to do this:

I+ you have disk
1) Insert EXPDISK into drive 9.
2) Enter: XSIZE(S51X24)

I+{ you have tape

1)} Put EXPTAPE in your recorder.

2) Position tape to beginning of *"SIZS1X24" program.

3) Enter CLOAD. When the "0OK' prompt reappears press (STOP)> ,
enter RUN and press (PLAY) again.

4) When the 'OK' prompt appears {it will be very small) preas
¢(STOP>. Mote that the current program in memory will be erased
when *"S12351X24" is run.

Type whatever you fancy on the screen. You will observe that
the characters being typed in are diminutive, You can change
color-sets , colors and graphic pages in the same way as you did
Wwith the 32 by 16 screen. However, when you are in the 'S1X24
state’ you can only print text on the PMODE4 graphic screen or
the text screen. Enter PMODEI and you will find yourself back
on the text screen because you cannot have PMODE3 text in the
'31X24 stata’, Enter PMODE4 to get back into PMODEA4.

To return to the '32X16 state' obey the following instructions:

B T T IR s

1+ you have disk
1) Insert EXPDISK into drive 9.
2) Enter:! ¥SIZE(32X16)

I1{ you have tape

1) Put EXPTAPE in your recorder,

2) Position tape to the start of "SIZ32X16"® program.

3) Enter CLOAD. When the 'OK' prompt reappears preass <(STOP> ,
enter RUN and press <(PLAY> again.

4) When the 'OK' prompt appears press <STOP)>.

Warning! the current program in memory will be erased!

IMPORTANT REMARK ! You cannot use filenames after the CLOAD and
SKIPF commands when you are in the "TEXTOFF" state,

KEYWORDS

(Thias is unavailable if you are in the '51X24 state')

All of the grey keys of the keyboard have been defined to
represent two BASIC words. To find a list of these words look
at Appendix B. Find the letter @ in Appendix B. You will see
that wunder the column headed 'Right Arrow’, the key stands for
the word FOR. This means that whenever you press <&>, while
holding right arrow down, the word FOR will become part of the
line that you are typing in. Look under the column headed 'Down
Arrow’® and you will see the word TO listed. This means that @&,
pressed in conjunction with the down arrow key, represents TO .
Try the two above examples and see for yourself what happens.
You. will find your programs much easier to type in wusing this
method ! A cut-out keyboard overlay is provided. You might like
to cut it out now?

THE FOLLOWING CHAPTERS

For the remainder of this section, it will be assumed that
you have already loaded EXP, are in PMODE4 and in the 'TEXTOFF
state'., If not, please use the loading instructions that are
described at the beginning of thia chapter.

Chapter 4. Improved loops

REPEAT...UNTIL LOOPS

The only loop available in ordinary BASIC ia the FOR .. .NEXT
loop . EXP {introduces a new kind of loop, called a REPEAT...
UMTIL loop. (These loops figure prominently in many high level
languages like Pascal). An example of a REPEAT...UNTIL loop in
a program is the following:

18 PMODE4, !

20 COLOR!, &

28 CLS

40 REPEAT

58 PSET(RND(256)-1,RND(192)~1,1)
68 UNTILPPOINT (128,961 =1

70 END

The above program sets random 9green points on a black
background . It repeats this process until the point at the
centre of the screen (co-ordinates 128,94) is green. Therefore ,
by deduction , a REPEAT ...UNTIL loop keeps repeating what is
in-between the REPEAT and UNTIL commands, untitl a certatn
condition is true ., Anything can be placed between the REPEAT
and UNTIL commands, Including other REPEAT .. .UNTIL loops and
FOR...NEXT loops. o

The REPEAT command may only be placed at the beginning of a
program line (only spaces can precede it). An ?RG error will
result 1f you attempt to execute an UNTIL command before the
corresponding REPEAT command is executed.

MULTILINE IF,..THEN...ELSEs

The IF...THEN...ELSE statement of Color BASIC s probably one
of the most vital commands of the vocabulary. It has, however,
one major drawback: the IF,THEN and ELSE commands must all be
placed on the same program line. In EXP, uaing the multiline IF,
..THEN...ELSE feature, one can introduce an IF .. .THEN .., .ELSE
statement to take up as many lines as one chooses. An example
of multiline IF...THEN...ELSEs i{s given below:

19 REPEAT

28 INPUT*Number®jn

32 IFn(ITHEN

43 PRINT"Negative®

58 ELSE

63 PRINT*Zero or positive®
73 ENDIF

80 UNTILE=1

The above program includes a few thiAgs that you have not
encountered before . Firstly , variables in EXP can eithépr be
uppercase or lowercase. The first two charactera of the

variable name are the only two that are recognized by the
computer, Lowercase variables are separate and distinct from
uppercase variables , i.e. the variable A is different from the
vartable a.

Secondly, the REPEAT...UNTIL @=1 which surrounds the main - - body
of the program means 'repesat forever', The only way to get out
of the program is to press (BREAK>. Line 3¢ to 79 of the
program make up one big IF...THEN...ELSE statement. The ENDIF
in line 70 signifies the end of the IF...THEN...ELSE statement.

How does the computer know whether you intend to use a normal
IF . . .THEN ...ELSE statement or a multiline one? The answer is
very simple. If nothing 1is placed after the THEN command
(spaces ,RE!M commands and colons count as something in this
context!) then a multiline 1IF .. .THEN ,, .ELSE statement is
assumed . Also , you must be careful not to put anything after
the ELSE and ENDIF commands -- only spaces are permitted before
them . Like a normal IF...THEN...ELSE statement the ELSE part is
optional. The ENDIF command is mandatory. Between the THEN and
the ELSE , and the ELSE and the ENDIF anything can be written
tincluding REPEAT...UNTIL loops, normal and multiline IF...THEN.
..ELSE statements).

INDENTATICN

Indenting programs can make programs easier to understand. To
indent programs use the EDIT command to i{nsert the ‘required
number of spaces. Everything between REPEAT and UNTIL commands,
FOR and NEXT commands, and THEN and ENDIF commands (apart {rom
the ELSE command) should be Indented three of four spaces
further to the right., Consider the layout of the above program
when it is indented:

12 REPEAT

20 INPUT"Number"jn

39 IFn(@THEN)
a7 PRINT"Posttive"

Sa ELSE

-3 PRINT"Zero or hégative®

72 ENDIF

80 UNTILQ=}

This facility makes the program much easier to read than one
lacking indentation. All programs in thia manual will be
indented from now on.

Chapter 5., Procedures

Procedures are very similar, but more versatile , than

subroutines . Every procedure has {ts own name that can be a

maximum of 38 characters long. To execute a procedure you must
place the PROC command in front of the procedure’'s name.
Information can be passed to the procedure. Each item of
information must be separated by a comma and brackets must
enclose the whole list of information items.

A procedure is defined using the DEFPROC command. If the
procedure reguires {nformation to be passed to it, then a list
of variables must be placed inside brackets (each wvariable
being separated by a commal . When the procedure {s executed
each variable 1{s made egual to the corresponding {tem of
information . At the end of the definition an ENDPRCC command
must be placed. This tells the computer that the procedure has
ended and the computer must now execute the BASIC command that
is after the PROC command. In many ways, PROC {s like GOSUB ,

and
the

19
29
32
a9
Sg
69
79
8g
g
199
119
129
139
140
15¢@
160
145
170
182
19Q
2e8
210
229
239
249
238
269
278
289
299
329
312
3z2¢
320
a4
358

ENDPROC is 1ike RETURN. The following program illustrates
use of procedures:

PMODE3, ¢

COLOR&,5S

cL3

SCREEN!{, !

PROChome

PREPEAT
PRINT@Z, * "}
INPUTas
IFLEFTS(a%,2)="UP" THEN PROCup (VAL (MIDS(a%,3)))
IFLEFTS (a%,4)="DOWM* THEM PROCdown (VAL {MIDS(a%,3)))
IFLEFTS(a%s,4)="LEFT" THEN PROCleft (VAL (MIDS®(a%,3)))
IFLEFT®(a%,5)="RIGHT" THEN PROCright (VAL (MIDS(a%,6)))
IFa$="CLS" THEN CLS
I1Fas="HOME" THEN PROChome

UNTILas$="END"

EMD

PAEREREEFEEREXXRREREEREREAANR

DEFPROChome

x=128

y=%6

ENDPROC

DEFPROCup {(n}

y=y=-n

LINE-tx,y),PSET

ENDPROC

DEFPROCdown (n)

y=ytn

LIME-{x,y),PSET

ENDPROC

DEFPROCleft (n)

x3ax-n

LINE-(x,y}),PSET

ENDPROC

CEFPROCright(n)

xmx+n

— Ty PG C
LINE-{x,y),PSET sbo ENDIROC

Lines 18 to 49 of this drawing-board program simply change

modes , color-sets and colors . Line S@ executes a procedure
called "home" which 'homes' the x and Yy co-ordinates of the
screen , i.e. makes them equal to the centre of the acreen. The
REPEAT...UNTILa%="END" loop keeps repeating until your input |is
“END" (see Line 88). Line 72 makes sure that the cursor is at

the top of the screen when Yyou input.

I+ you input "UP3S" then the computer will draw a line upwards
that is 35 units long. The same applies to DOWN, LEFT and RIGHT.
I you enter "CLS" then the computer will clear the screen ,
and {f °“HOME* {s entered then it will move the x and y
co-ordinates to the screen’s centre (128,964},

Lines 92 to 120 are the most difficult to comprehend. In plain
English , Line 92 reads:! 'lf the first two characters of a$ are
"UP" then execute a procedure with the name of “up”. The
information to be passed to the procedure is the valuz of as
from the third character onwards. The variable n is made equal
to that value.’ A similar concept applies to Lines 190 to 120.
(Note the END command in Line 168, It does not really need to

be there since the computer will never execute Line 1608). The
rest of the program consists of the definitions of the
procedures . Save the program . You will be needing it in the

next chapter.

I+ you are writing a program in which a string constant is an
{tem of information that I3 passed to the procedure then you
must put a * "*+ * (null string and then a plus sign) in front
of the string constant . The DEFPROC command should only be
placed at the beginning of a program line and you should put
nothing before {t (not even spaces). The names of procedures do
not need to be in lower-case, but they are certainly easier to
read that way. The names can be anything you choose.

An ?RG error will occur if you try to ENDPROC without executing
a procedure. A ?PUL error will result {f the procedure’s name
does not exist anywhere {n the program. You will get an ?SN
error or ?TM error if there i3 an error in a PROC command line
or DEFPROC command line. The error will always be registered in
the PROC line. A ?SN ERROR will also arise {f you ¢try to
execute a procedure without using the PROC command.

DELPROC
Every time
where it must return to so that when the
executed {1t will know where to continue your program. When it
does return, the computer has no further need of remembering
the ‘return line’ and so the computer will forget. By using the
DELPROC command you can make the computer +nrgé£ the last
return line that it remembered, without having to return from
the procedure! By using DELPROC®, the computer will forget ALL
return lines . The syntaxes for DELPROC and DELPRCCZ are simply
DELPROC and DELPROCZ! You’ll only very occasionally want to use
DELPROC and DELPROCHZ.

a procedure is executed, the computer must remember
ENDPROC command is

STRUCTURED PROGRAMMING

Programming in a structured way is possible in EXP. Structurad
programming is a necessity in many other comguter lanhguages .
In EXPANDED BASIC it {nvolves:

1) Indenting programs,

2) Not using GOTO unless absolutely necessary. ‘ _

3) Using procedures , REPEAT,..UNTIL loops and multiline IF...
THEN...ELSE statements,

4) Hardly ever using colons.
S5) Using REM statements to
program.

6) Using lower-case variables and procedure names.

describe the functioning of your

Structured are far easier to follow that unstructured

ones.

programs

Chapter 6. Error Trapping

In E€XP, one can trap errors. 'Trapping errors’ means going to a

certain section of a program (calied the ‘error trap routine®)
when an error occurs. Normally, tn Extended Color BASIC, an
error message (e.g. ?SM ERROR) will be printed and the computer

will stop running your program. By using the ’ONERROR 1 GOTO"
command we can instead go to a certain part of the program when
an error happens.

Reload the program you typed in in Chapter S. Let us alter the
program so that when an error occurs, the computer will go into
PMODE4, color-set @ before the error message is printed. Add
the following lines:

S ONERROR:GOTO1999
1298 PMODE4,)

1918 CLS

1923 SCREENL, 92
1939 ERRORERR

Line S5 tells the computer to go to line 1999 when an error
occurs, Lines 19000 to 1920 go into PMODE4, color-set @ and
clear the screen . EXP has a special command, ERROR, which
causes an error message to be displayed. For example enter
ERRORZ and the computer will respond with an ?NF error message.
This is because the code for NF error is @. Enter ERROR4 and
you will get an ?FC error (FC error’'s code is 4). A function
called ERR tells us the code of the error that just occurred .
Enter PRINTERR and you should get 4 (4 was the code of the last
error). Therefore, in line 1932, ERRORERR means: 'print the
error message of the error that has just occurred’. (The ERROR
command also causes the computer to stop running your program) .
EXP has another function called ERL. ERL tells you the iine in
which the error occurred. There is a list of all error codes in
Appendix C.

How can an error occur in the program? Well, suppose you were
to Input “LEFT1008". Since the grid size of the graphic screen
for graphics is 256 by 192 , going LEFT!999 would obviously
cause an ?FC error. Run the program and see for yourself what
happens.

EXP has three other commands that can be used in error trapping.
They are CONTON, CONTOFF and CONTERROR. These commands affect
the - operation of the <(BREAK)> key. CONTOFF disables the (BREAK)
key (i.e., <BREAK)> now acts like any other key of the keyboard) .
CONTON re-enables the <BREAK> key . CONTERROR makes (BREAK>
cause an error of code 127 everytime it is pressed. Now enter
ERROR12?7 . You should get the break message, but in fact You do
not! Instead, enter STOP. This time the message *BREAK’ does
appear } this shows that to BREAK the program you STOP rather
than invoke ERROR127.This is how you do it in practice.

Add line 7 to }cur program:

7 CONTERROR

Delete tine 1939 and add:

1930 IFERR=127THEN

1949 sTOP
1939 ELSE
1969 ERRORERR

1978 ENDIF

Now run the program. The break message should be displayed on
the PMODE4 screen when you press (BREAK)>. Next change line 7 to!

7 CONTOFF

and run the program. Try pressing (BREAK)>. You will find that
this will no longer let you 'break out’' of the program., Type
"DOWN2Z but do not press <(ENTER>. Instead press (BREAK) .
Nothing should happen ., When (BREAK)> is in the 'CONTOFF state’
and is pressed when you are inputting, (BREAK> will act like
(ENTER> except that it causes the computer to ignore what you
have just typed in. Press RESET to get back into the 'OK' mode .
Change line 7 back to:

7 CONTERROR

Delete line 1933 and add these lines!

1939 DELPROCO
1949 PRINT*Error"
19S8 GOTO78

Now run the program. You will discover that the computer prints
"Error® everytime you press <(BREAK)> or cause an error. You
should always use DELPROCZ in the error trapping routine, if
the program contains prcedures. Remember that 'ONERROR :GOTO'
closes all open files and FOR...NEXT loops and also causes the
computer to forget where it must return to after a GOSUB
command.

The command ERROROFF {s the opposite of °*ONERROR:GOTO' and
allows the computer resume the normal way of printing error
messages and breaking out of programs when an error occurs.

RUNM and CLEAR

Here are a few facts about the RUN and CLEAR commands. Whenever
a program is run, the computer closes all files, clears all
variables , etc . In fact , the only thing that the computer
remembers is the actual program. The same applies to Color
BASIC's CLEAR command . When the CLEAR command is entered
everything is $orgotten except the actual program and the
number of string storage bytes that should be reserved.

Chapter ?. New sounds and characters

The tones available to you in Extended Color BASIC come via the

PLAY and SOUND commands . Their quality s governed by the
"square wave' shape of the note. With EXP, you can atter the
‘quality’ of the tone and obtain some really bizarre sound

eftects by changing the shape of the wave patterns. The method
is to deftine an envelope (wave) of sound with the ENVELOPE
command and to play it using the BEEP command. The ENVELOPE
command lets you increment the volume of the note played in
each of four successive stages. The syntaxes for ENVELOPE and
BEEP are:

EMNVELOPE nlpll,vl1,slip12,v12,52;pl3,vi3,s3ipl4,v14,s4

where n is the envelope number, pi is the pitch increment, vi
is the volume increment and 3 is the number of increments. n ,
pi, vi and s are numeric expressions.

‘BEEP nisp,sv,t

where n is the envelope number, sp is the starting pitch and sv
is the starting volume. t is the number of times the envelope
is beeped.

You may define up to 16 envelopes. Therefore the values foar n
must 9o from { to t6. pi,vi,s,sp,sv,t all range from 9 to 2SS5.

PiTCH

A

+
i
: FIGURE P
: '
bt { |
!
]
P : |
o(-;-sll-'—b;e-——A §L——— e— 53 —fe 54 STEP.
YoLume
N\
FIGURE Vv

Step.

Each of the 4 parts of the envelope instructs the computer to
increase the pitch (pi) and volume (vi) for a specified humber
of steps, See the Figures p and v to see what happens typitally.
(I1f you wish to silence the computer in a particular part of
the envelope make pi,vi and s all equal P). The starting plitech
and volume of each sound effect is determined by the sp and sv
values in the BEEP command. t is the number of times that the
camputer must 'beep’ the envelope.

Although vi and pi range from @ to 2535 , {f vi and pi are made
to exceed this range (by incrementing) then the numbers restart
from 2 (1 .e . the computer interprets the number 237 as 1).
This means that you can decrease vi{ or pi{ by one by adding 235 j
similarly for other decrements.

An example of the BEEP and ENVELOPE commands in a program is as
follows:

10 ENVELOPE!112,7,510,0,019,92,0198,08,0
20 FORp=BTOZ0PSTEPLQ

30 EEEPL1;p, 100,308

40 NEXTp

50 END

Line 10 defines only part | of envelope 1, (The other parts are
silent) . The envelope Increases the pitch by 19 and the volume
by 18 five times. Line 32 beeps envelope 1 with the starting
pitch as the wvariable p , the starting volume as 1998, for 32
times. Run the program and hear the sound effect. Note that the
higher the pitch, the faster the beep.

Some useful sound envelopes are listed in Appendix D. You are
urged to experiment and develop your own.

REDEFINING CHARACTERS

Using EXP, one can redefinée a character. The syntax for
redefining characters is:

CHR®(c)=d1,d2,d3,d4,d5,d6,d?;d8,d?,di9,d11,d12

where ¢ 1is a numeric expresslonAranging from 32 to 127 and the
'd's are numeric expressions ranging from 2 to 25S.

For example, to redefine CHR%(95) (produced when Yyou press
{SHIFT>/<up arrow>) from a back arrow to a dagger, you would
first have to draw up the new character on a sheet of paper .
You would write a '1l' to represent the foreground color and a
'?* for the background rolor. There are 8 dot positions across
and 12 down for each character. The dagger, drawn in a series
of @'s and 1's would look like:

222202 =2
[ufegetetatuln) =9
oo 12202 =16
211111990 =124
21111100 al24
02190092 =16
oug 199092 =146
00219089 =16
20312209 alé
0212003 =16
20000002 =92
PABIIAAY =9

The next step is to translate each row into a number, Each row
represents oneé byte in binary. To work out the conversion to
decimal look up pages 184 to 18% of "Going Ahead With Extended
Color BASIC®" . There you will see a list of base conversions.
Look under the column headed binary and find the appropriate
pattern of £'s and 1's that corresponds exactly to the pattern
of the row. In the example above, these numbers are written
after the equal sign. Thus you would then enter:

CHRE(95)=0,0,16,124,124,16,16,16,16,16,8,0

Press <(SHIFT>/{up arrow> and you will discover a dagger instead
of a back arrow.

You may also redefine tharacters when in the '51X24 state' .
However , the 'd's must go from @ to 15 and there must be only
eight *d's ligsted (instead of 12) since a "51X24' character |is
4 dots across and 8 dots down.

Chapter 8 - Scrolling

SCROLLING ON THE TEXT SCREEN

Type in the following program:

12 TEXTON

29 CLS8

J2 PRINTR232, "THIS IS AN EXAMPLE"j
49 PRINT@265, "OF SCROLLING"j

59 REPEAT

69 SCR(6,5)-(23,10),150,L
79 FORdelay=1T049092

8 NEXTdelay

P2 UNTILE=]

and run it. Press (BREAK)> to get back into the '0OK' mode., The
program 1is an example of scrolling. Scrolling, put simply, is
moving the screen display within a section of the screen. In
the above praogram , the message “THIS IS AN EXAMPLE OF
SCROLLING" moves slowly left across a certain scetion of the
text screen. We’ll call a section of a screen a 'window',

To scroll on the.text screen use the SCR command. Its syntax is:

SCR(a,b)~(c,d),e,direction

where (a,b) is the top left corner of the window and (c ,d) is
the bottom right corner of the window. e is the alphanumeric
code of the column or row of characters that is {inserted (in
the case of the program above: the column is inserted at the
far right of the window). Direction is U for up, D for down, L
for left and R for right. Obviously a must be leas than c, and
b¢d., Since the text screen is 32 across by 16 down, a and c¢ are
numeric expressions ranging from & to 31, and b and d range
from @ to 15. In line 69 the SCR command line was:
SCR(6,51-(23,19),159,L

Therefore the top left corner of the window has a x coordinate
ot & and a vy coordinate of 8. The bottom right corner of the
window has coordinates 23,19. The code for a ‘checkerboard'
yellow graphic character s 159 , w0 a column of these
characters is inserted at the +far right of the window. See
Appendix E for a list of the alphanumeric code.

Change Line 49 so0o {t reads:
6% SCR(6,3)-123,10),138,0

When you run the program you will notice the window scrolling
up. Change Line 469 again to:

69 SCR(6,5)-1(23,19),159,R
This time running the program will cause the window to scroll

right . Yet again, change Line 4¢ to the following and rumn the
program;

69 SCR(6,5)-(23,19),8,R

In this example e is @ and therefore NO column of characters is
inserted . Change the size of the window by altering Line &0 to
the following and running the program:

60 SCR(G,0)-(31,15),158,L

Here the window occupies the whole screen so the whole screen
will move left. Finally, change Line 62 to:

68 SCR(@,0)-(31,1%5),255,L

and run the program. Only the message will appear to movel this
is because the character column that ia inserted is full orange
which s the same color as the background color (Line 28 of the
praogram).

SCROLLING ON THE GRAPHIC SCREEN
Type in the following program:

18 TEXTOFF
28 PMODES, !

3¢ COLOR3, 2

49 CLS

S¢ CIRCLE(138,96),59

68 PRINT@132,"Scrolling”}
78 REPEAT

ag PSCR(9,8)-(31,47),L
99 UNTILO=1

and run it. A circle will scroll to the left. The syntax for
PSCR is very similar to SCR, and reads:

PSCR(a,b)-(c,d) ,direction

Notice that there {8 no e in the syntax of PSCR. e is assumed

to be the current background color. In PMODEs ¢ and 2, a and ¢
go. from 2 to 15. In PMODEs (,3 and 4, a and c range from & to
31. In PMODE®, b and d go from 9 to f1. In PMODEs 1 and 2, b
and d go from @ to 23. In PMODEs 3 and 4, b and d range from 2
to 47. Hence the window mentioned in tine 8¢ of the above
program occupies the entire graphic screen . In the above
program, e was 2 because the background color was 2. I+ the
background color s the same as the f{oreground color then no
new color column or row is inserted.

Chapter 9. A Miscellany

BORDER

The BORDER command will draw a border on the text screen. In a
way , BORDER is very similar to the high resolution command
"LINE...,B" of Extended Color BASIC. BORDER's syntax is!

BORDER(a,b)-(c,d), e

where (a,b) are the co-ordinates of the upper left corner of
the rectangle in which the border will be drawn, and {c,d) are
the co-ordinates of the bottom right corner. Obviously a(c, b<d.
a and c are numeric expressions that go from 8 to 31, b and d
go from & to 15. For example, to draw a border in a checkered
yellow character , juat inside the edge of the text screen, ane
would type in the following program:

12 TEXTON

29 CLS

39 BORDER(D,2)-131,1%),1509
49 REPEAT

S@ UNTILD=1

The REPEAT...UNTIL@=] loop af course means 'ropelﬁ'fbrovor' and
because {t is placed at the end aof the program, it acts like an
infinite loop. Typing

42 GOTO0492

would achieve the same effect. However, if you decide to write
programs in a structured way, then you should use as few GOTO's
as possible. Change Line 32 to:

3¢ BORDER(8,2)-(31,1%5),150,F

and run the program. This time the vWhole screéen is
'checkerboard yellow' . This is because the ',F’ at the end of
the BORDER command llne tells the computer to fill the area of
the screen surroundad by the border with the same character
that the border has been drawn in.

EXTRA GRAPHIC PAGES

Enter TEXTOFF. Than enter NEW12, Finally enter PMODEZ ,12, Yau
might imagine that entering PMODEZ ;i2 will generate an ?FC
error, but this is not the case. The reasaon is that the NEW
command with a number +following it tells the computer to not
only erase the program currently in memory, but ta PCLEAR that
number of graphic pages. Normally one can PCLEAR only 8 graphic
pages, but with NEW the highest number of pages that can be
reserved {is 18. Therefore when you entered NEW12, the computer
NEWed your program and PCLEARed 12 graphic pages, It was then
possible, of course, for the computer to go into PMODEQ,12 .

20

In EXP , you can i1l sections of memory with a particular
number. The syntax for the FILL command is:

FILL s,e,n

where s |{s the start address of the section of memory, e is the
end addreas of the section of memory and n is the number with
which the section of memory will be filled. 8 and e are numeric
expressions going from @ to 45535 , and n is a numeric
expression with a range of @ to 255. Enter TEXTON (unless you
are already in the 'TEXTON state’) and enter FILL1024,1335,255.
The text screen should clear to orange, because the text screen
goes from byte 1924 to byte 1535 in memory and 255 is the
alphanumeric code for the full orange character.

The MCOPY command copies a section of memory to another section
of memory. Its syntax {s:

MCOPY f,t,n

where f is the start addreas af the section of memory that is
being copied and t is the =start address of the section af
memory that is receiving the copy. n is the number of bytes
that will be copled.

REVERSE VIDEO
REV 'reversés’ the color af the text chérac(bru an tﬁe text
screen., Enter the followihg program tc see REV in dctiont

19 CLS

20 PRINT"PRESS ANY KEY TO REVERSE THE COLOR®
39 REPEAT

a9 REPEAT)

52 UNTILINKEYS®(>"*

Y- REV

78 UNTIL®=}

Preas (BREAK> td get batk irito the *OK' mode.

21

GOTO, GOSUB VARIABLE LINE NUMBERS
In EXP , one canh put variables after GOTO and GOSUB commands.
Type in the following:

19 h=190
20 REV
33 GOTOh

and run it to understand its significance. (You can use this
method instead of Extended’s ON ,...GOTO.., or ON.,.GOSUB...)
Press (BREAK> to escape from the program,

22

SECTION 2 - EDIT/HELPER COMMANDS
FEHIE 3602636 36 26 HE 0 I I I

Chapter 18. Keys

Due to memory limitations, all of the +features of EXP cannot
exist in memory at once. This section of the manual describes
the editing and helper features of EXP. I+ you have these
features in memory then yocu cannct have the graphic screen
features as well. The graphic screen features introduced in
Section 1 were:

printing text on the graphic screen,

scrolling the graphic screen,

PCLEARing more than 8 graphic pages

using the NEW command, and

switching from text to graphic screen and vice versa using the
TEXTON and TEXTOFF commands.

Therefore a useparate EXP program was made that has the editing
and helper features but not the graphic screen features, To
load that program firat switch off your computer. It it is
already on, switch it off and turn it on again.

I+ you have disk and a CoCo #1

1) Load EXP as described in Chapter 3.
2) Put the EXPDISK in drive &.

3) Enter: ¥COM(E)

1f you have disk and a CoCo #2
1) Insert EXPDISK into drive &.
2) Enter RUN"R" . When "R" is fully run, the following message
should appear on the screen:

DISK EXTENDED COLOR BASIC 1,92

COPYRIGHT (C) 198@ BY TANDY

UNDER LICENSE FROM MICROSOFT
3) Enter RUN"E". When the program has fully run, the following
message should appear on the PMODE4 graphic screen:

DISK EXPANDED COLOR BASIC 1.3

COPYRIGHT 1984 BY T.DELBOURGO

INCLUDES EDIT/HELPER COMMANDS

I+ you have tape
1) Put EXPTAPE into tape recorder.
2) Position tape to beginning of *R" program.
%) Enter CLOAD and press <PLAY>. When the '0K' prompt reappears
press <(STOP>.
4) Enter RUN and press <PLAY>. When the following message
appears, presas <STOP>:
EXTENDED COLOR BASIC 1.8
COPYRIGHT (C) 1982 BY TANDY
UNDER LICENSE FROM MICROSOFT
3) Position tape to beginning of "E® program.
4) Enter CLOAD and press (PLAY>. When the 'OK' prompt appears
press (STOP>, enter RUN and press <(PLAY)> again.
7) After the following message appears, press (STOP):

23

EXPANDED COLOR BASIC 1.3 .
COPYRIGHT 1984 BY T.DELBOURGO
INCLUDES EDIT/HELPER COMMANDS

The editing and heiper features now reside in your computer’'s
memory.

ON-SCREEN COPYING

Type anything you like and press (ENTER)>. Now press the (CLEAR)
key. While holding the (CLEAR) key down, press the up arrow key.
You will see & reverse video cursor (which we shall call the
'second cursor') above the normal cursor. By holding down the
(CLEAR> key and simultaneous]y pressing the arrow keys, one can
move the second curscr around the screen. Note that the <(CLEAR)>
key will no longer clear the screen. Position the second cursor
over a character on the screen. Press <(CLEAR)/<@> and the
computer will now copy the character and make that character
part of the line that you are typing in. Observe that the
computer also moves the cursor one position to the right when
you press (CLEAR>/(@>. When you have finished copying, by
pressing <ENTER> the second cursor vanishes and you will have
to press (CLEAR>/C(arrow key> to bring it back into operation.

This method of moving a second cursor about and copying
characters an the screen offers a new way to edit programs and
information. On-screen copying also works with the LINEINPUT
and INPUT commands.

FUNCTION KEYS

You can define any of the number keys (2 to 9) to stand for (up
to} 15 characters. For example; you could define <@> to
represent LIST . You activate this by using the KEY command. In
this case you would enter:

KEYZ*LIST*

Now, whenever (CLEAR>/<@> is pressed, LIST will become part of
the line that you are currently typing in. You can also make a
key represent an enter, for instance. To make <Z)> represent
LIST <ENTER> you would enter:!

KEY@"LIST®"+CHRS(13)

CHR®(13) is the character that represents the ehter key. Now
all you need do is press <(CLEAR>/<@> and your program is listed.

24

AUTOKEY REPEAT

Is it not a nuisance that if you wish to type 32 spaces, you
must press and release the (SPACEBAR)> 32 times? With ‘autckey
repeat"’ you need only press the key down once and hold it until
32 spaces appear on the screen. To enable autokey repeat use
the KEYSCR command. Its syntax is:

KEYSCR a,b

where a is the number of sixtieths of a second before the key
‘repeats’ and b is the number of sixtieths of a second between
each repeat . a and b are numeric expressions ranging from & to
258.

Enter KEYSCR30,3 . Press the <(SPACEBAR) and hold it down .
Notice how the key autorepeats , There is one problem with
autorepeating: when entering BASIC words using the right and
down arrow keys , as described in Chapter 3, the key that you
are pressing down autorepeats as well as the BASIC word! This
is unavoidable.

To disable austokey repeat, enter:

KEYSCR2S55, 255

25

Chapter 11, Printing Alds

AUTOLINE NUMBERING

The computer can supply you automatically with line numbers as
you type i{in your programs . For the computer to do this, you
must use the AUTO command. Its syntax is:

AUTO =,i

where s is the start line and i {s the increment., Both 8 and i
are numeric expressions ranging from @ to 63999.

Enter AUT022 ,5 . Type in the following program. With AUTO, o+
course, do not type in the line numbers. Here is the program!

2@ PRINT®"THIS IS A PROGRAM®

23 PRINT*THAT SHOULD BE TYPED IN*

3@ PRINT®USING THE EXPANDED COLOR BASIC®
35 PRINT®AUTO COMMAND. *

49 END

To get out of the ‘AUTO state’', press <(BREAK>. Now list the
program. It should appear as above.

.-

ADJUSTABLE PRINTER WIDTH

You can change the width of
your rinter usi
command. Its syntax {s: P %ing the WIDTH

WIDTH p

wrerp p is a numeric expression representing the new printer
width.

Enter WIDTH32 and LLIST the program . You will see that no
LLISTed program line is longer that 32 characters, and this is
exactly how it appears on the video screen.

26

SECTION 3 - G-SCREEN COMMANDS
FRIHFEEE R EHEERFHEEERHAREAR

Chapter 12. The Q-screen

There is a third EXP program in which you are not able to use
the graphic screen features , nor the editing and helper
teaturea. Instead you have available the '@-screen features®' .
These are associated with the Semigraphics~24 mode. In that
mode, the resolution of the screen is 32 across by 192 down ,
and in EIGHT colors. Because of the poor quality of most TV’s,
these colors when blended in with one another, often produce
new color mixtures , that are distinct colors. The color mixing
{s achieved by putting two colors (which may be different) on
alternate horizontal lines.

To load the '@ commands®' first switch on your computer. I+ it
is already on then switch it 04+ and turn it on again. Obey the
tollowing loading instructions:

1{ you have disk and a CoCo#1l
1) Put EXPDISK into drive & and load EXP.
2) Enter: *COM(Q)

1 you have disk and a CoCo#2
1) Insert EXPDISK into drive 2. .
2) Enter RUN®R®" . When "R" {s fully run, the following message
should appear on the screen:
DISK EXTENDED COLOR BASIC 1.4
COPYRIGHT (C) 1981 BY TANDY
UNDER LICENSE FROM MICROSOFT
I) Enter RUN“G". When the program has $¢ully run the #ollowing
message should appear on the screen:
DISK EXPANDED COLOR BASIC 1.3
COPYRIGHT 1984 BY T.DELBOURGO
INCLUDES Q-SCREEN COMMANDS
1+ you have tape
1) Put EXPTAPE into tape recorder,
2) Position tape to beginning of *"R* program.
3) Enter CLOAD and press (PLAY>. When the *'0OK' prompt reappears
press <STOP>.
4) £nter RUN and preass <PLAY). Wwhen the following message
appears press <STOP»:
EXTENDED COLOR BASIC 1.9
COPYRIGHT (C) 1988 BY TANDY
UNDER LICENSE FROM MICROSOFT
%) Position tape to beginning of "Q" program.
6) Enter CLOAD and press (PLAY)>. When the 'OK’ prompt appears
press (STOP>, enter RUN and press (PLAY> again,
7) After the.#n0llowing message appears, press (STOP>:
EXPANDED COLOR BASIC 1.3
COPYRIGHT 1984 BY T.DELBOURGO
INCLUDES Q-SCREEN COMMANDS

27

Enter PMODE4,1 and the Q commands w{l! become fully operational .,
It {s necessary to enter PMODE4,! because the @-screen can only
be applied in that PMODE.

Type in the following program:

12 QON
65 REPEAT
70 UNTILO=1

and then run it. The Q-screen will be displayed. Press <(BREAK)
to get back into the 'OK' mode. The QON command, in Line 19 of
the program, i{nstructs the computer to show the @-screen on the
TV . The opposite of QON command s QOFF which tells the
camputer to gjo0 back to the text sacreen.

CLEARING THE &-SCREEN

Add this line to your program:
18 QCLS(3,4)

and run {t again. A new color, mauve, will +111 the entire
screen . The command, QCLS, clears the Q@-screen to a color mix
of two colors. In the example above, the colors were blue and
red . This then means that all even horizontal! lines will be
blue, and all odd ones wil}] be red.

Change Line 15 to:
15 QCLS(9,0)

Now run the program. This time the screen will be cleared to a
solid black color.

SETTING AND RESETTING POINTS

Add these lines:

20 FORx=@T0&3

25 QSET (x,96,2)
38 NEXTx

35 FORy=8T0191

Y] QSET(32,y,7)
45 NEXTy

and run the program ; Oh the black screen there will appear a
yellow horizontal line that {s bisected by a magenta vertical
line . You may deduce that the command, QSET, sets & pbint bn
the B-screen, Its syntax is:

QSET (x,y,c)

where x is the x coordinate and ranges from @ t8 83, y is the vy

28

coordinate and goes +from £ to 191, c is the color and ranges
from 1 to 8, x, y and c are all numeric expreasjons.

To reset a point on the @-screen (set {t to black), we use the
QRESET command. Its syntax is:

QRESET (x,y)

where x {a the x coordinate and y is the y coordinate. x and y
are again numeric expressions,
Add these lines to the program and then run it:

S¢ FORx=@TO063
ss QRESET (x,96)
68 NEXTx

The original yellow line will be reset,

FINDING OUT THE COLOR OF POINTS

We can probe the color of any location with the ’POINT(@ }°
function . Type 1in the following program to see °POINT(@3°' in
action:

18 QON
20 QRCLS(E,a)

3% REPEAT

ag QSET (RND (44) -1,RND(32) -1,RND(8))
83 UNTILPOINT(Q132,94)<>0

The program will set randomly colored dots at -random positions
on the QR-screen until the dot at the centre of the screen
(coordinates 32,94) i1s not black. The 'POINT(Q §3' function in
Line 5@ returns the color of the point at the specified x and y
coordinates.

29

Chapter 13, 8 printing dnd scrclling

PRINTING ON THE Q-SCREEN

Here is a which demonstrates how t6 print &n the

G-screen’

program

19 QON

20 QCLS(2,8)

39 BPRINT@231, *THIS IS AN EXAMPLE"
49 QPRINT@266, "OF PRINTING®

59 REPEAT

69 UNTILO=1

Run it ., Press <(BREAK)> to return to the 'OK’ mode. You will
notice a new command in Lines 39 and 493, Its syntax is:

GPRINT m$
where m$ = a string expression.

GPRINTQR is also implemented. The 'Q’ co-ourdinate is the same as
for the TEXT screen. Three things to note:

1) APRINT will only print strings, not numbers, To convert a
number into a string, use Color BASIC’s STRS function,

2) QPRINT will only print one string expression.

3) GPRINT does not advance to the next line, unlike PRINT. The
screen does not scroll up when the printing position reaches
the far bottom right of the screen. Motice that no semi-colon
vwas placed at the end of the QPRINT command line in Lines 392
and 49, NEVER put a semi-colon at the end of a @QPRINT command
line . I¥ you want to advance to the next line then put a
'+CHR$(13)’ at the end of the string expression,

SCROLLING THE 9-SCREEN

You can scro!l the @-screen QSCR command. @SCR’s

syntax is:

using the

@SCR(a ,b)~-(c ,d) ,e ,¥ ,direction
inserted

if a column or row is to be

OR

A@SCR (a,b)~(c,d),,direction
inserted.

i+ no column or row is to be

[V U SO

30

ta ;b) are the coordinates of the top et corner of the window,
{€;d) are the coordinates of bottom right corner of the window .
The grid =size of the @-screen for scrolling i{s the same as for
the text screen. Therefore a and c go from £ to 31, b and d go
from @ to 1S. e and § are the two colors that make up the color
mix of the column or row that is inserted.

The next progrsm illuatrates scrolling on the G-screen:

19 QON
29 QCLS(3,4)

30 QPRINTR7, *THIS IS AN EXAMPLE®
40 GPRINTE4Z, *OF SCROLLING®

5@ REPEAT

69 QSCR(7,0)-1(24,15),7,8,D
70 UNTIL@=!

Type in and run the program. The message °'THIS 1S AN EXAMPLE OF
PRINTING® will scroll down the ascreen. A color mix row of 2 and
8 is inserted. Press <BREAK> to get out of the program. By
changing Line &9 to:

6@ QSCR(2,0)~(24,15),,D
no new row will be inserted.

IMPORTANT NOTE

NEVER USE A VARIABLE
COMMANDS IN MEMORY. '

STARTING WITH THE LETTER @ WITH THE @

THE STOP COMMAND HAS BEEN RENAMED QUIT.

With any of the three EXP
‘extra commands' in
consume (.25K of User RAM. To load the
load any of the

EX

SECTION 4 - EXTRA COMMANDS AND SAMPLE PROGRAMS
FEIE X3 0 X33 3303036 I I I I 0 0

Chapter 14, Extra commands

programs, Yyou may also have the
These commands will, however,
extra commands +first
three EXP programs (the loading instructions

memory .

for the EXP programs are mentioned in Chapters 3, 18 and 12) .,

Then:

I+ you have disk

1) Put the EXPDISK into drive &.

2) Enter: *EXTRA

I+ you have tape

1) Put EXPTAPE into recorder,

2) Position tape to start of "EXTRA" program.

3) Enter CLOAD and press <(PLAY)>. When the 'OK' prompt reappears,

preas <STOP>.

4)

Enter RUN and press (PLAY>. When the 'OK' prompt appears

press <STOP>,

The

extra commands are now resident in wmemory . All extra

commands begin with a *.* {full stop symbol).

LOCAL VARIABLES

With the extra commands, you can make variables 1in

procedures

'local’ . When a variable is ’localized’, the computer remembers
its original value., Thus when the procedure is finished and the

computer

to

returns from the procedure, it restores the variable
its original value. The following program is an example of

the use of local variablesa:

S .

DELLOC

7 DIMLIt(D)

12
29
32
49
69
22
89
99

INPUT"CHARACTER OF LINE"jc
PROCprint asterisks(%)
PRINTSTRINGS(32,c)
END
DEFPROCpPrint asterisksi(n)
.L0Cc
FORc=1TOn

PRINT* %"

128 NEXTc
119 .ENDPROC

o s anmatn, h

32

and run {t, To type in the '{* character
press <(SHIFT)>/<down arrow)> and to type in ') press
¢SHIFT>/<right arrow> . Enter any number #from 128 to 255 in
answer to the prompt: *"CHARACTER OF LINE". What this program
does is to print 5 asterisks vertically and then a line of the
graphics character of the code that you entered. (I the
graphic screen features happen to be in resident in memory,
then enter TEXTON before running the program).

Type 1in the program

After the program has run, enter: PRINTc . The computer will
respond with the same number as the number that you inputted.
You would be correct in thinking that the value o0of <c changed
when the procedure was executed. However, before the value of c
changed, we localized the variable. Hence, when the computer
returned from the procedure, it restored the original value of
c.

Now, let’'s go through the difficult lines of the program. Line
5 tells the computer to forget any previous local variables.
You must always put ',DELLOC' at the beginning of a program
that requires local variables., (You should also put '.DELLOC®
in an error trapping routine), Line 7 tells the computer that
only one variable will be made local and that it shall be a

number. The computer can localize a maximum of 255 string
variables and 255 numeric variables . In order to tell the
computer that a maximum of 252 string variables and 31 numeric

variables will be 1localized you would need to include the

following line as part of your program:
DIMI](31),[)%(250Q)

I+ you are not sure how many variables will be made local then
make a reasonable estimate . You can always begin with
dimensioning (1 and (J% larger than they need be. Line 282
localizes the variable c. If you want to localize more than one
variable, then separate each variable name by a comma. The * .
ENDPROC®' command in Line {10 delocalizes the variable{(s) and
the returns from the procedure. Whenever a procedure localizes
variables , you must always put an '.ENDPROC' rather than just
'ENDPROC’ as the procedure’s last line.

A ?BS error will result if you try and localize more variables
than you have dimensioned [] and [1%,

33

EXECUTING STRINGS AS COMMAMIS

With the extra commands, strings can be executed as commands.
Simply place a *.’' (full stop symbol) in +¢ront of the string
and you're in business.

For example, enter:
."CLS"
and the screen will clear. Enter:

agm*CLS"
a%

and the screen will again clear , This (s not possible in
Extended Color BASIC! Therefore, the syntax +for executing
strings as commands is:

.CS

where c$ is a string expression . I+ the string expression
begins with a string function then you must put a '“"+' |inp
front of the string expresion.

e.g9. LEFT$(a%,3) is incorrect, but
.""+LEFTS%(as,3) is correct, L

When equating string variabies to be equal to string constants,
using the 'executing a string as a command’ feature, you must
put & '*""+' in front of the string constant. Also, your atring
cannot contain multicommands (commands separated by a colon)
and cannot exceed 232 characters,

WARNING You cannot execute strings as commands if the strings
contain the words FOR, NEXT, REPEAT, UNTIL, GOTG, GOSUB, a
multiline IF..THEN,.ELSE statement or an extra command. Neither
can you use the abbreviations question mark or apostrophe for
the PRINT and REM commands in your string,

34

Chapter 13, Sample programs

CONGRATULATIONS !!!

I+ you have ploughed through the manual! and understood all ‘the
concepts, then you have mastered Expanded Color BASIC. At first,
you may find it necessary to reread the whole manual to fully
absorb it.

Some sample programs are provided. It {s time to run and study
them now. Use the graphic screen features +for sample program
¢ilenames beginning with the letter 'G* , and the @-screen
teatures whenever the filenames start with a '8'. To load and
run the programs, obey the following instructions:

I+ you have disk

1) Put EXPDISK into drive 4.
2) Enter RUN"filename® {where "filename® is the filename of
the sample program).

1f you have tape

1) Put EXPTAPE into tape recorder,

2) Position tape to beginning of sample program.
3) Enter CLOAD, and press <(PLAY)>.

4) When the 'OK® prompt appears, press (STOP>.
5) Enter RUN

I hope that you will have fun exploiting the power of E}plndtd
Color BASIC In your own programs. Appendices are supplied for
ready reference.

Again, happy EXProgramming.

35

APPENDIN A - PRINT® POSITIONS

-

-

-

-0

(43

%0

a

IbY

-3

-

-t

36

18

3

%0

44

1Y

vy

ko

1%

[A!

phL

37

fa T

3
a

1A

~no

I

rd

ryrt

r~ -

rvO

-

-

-0

~n

-

[-

'
)

2% 3 § 6 7T 8 % 0

g 2 %

Q
Ee 8
@
9¢
ny
10
n

A

A

By

38y

4t

«wol

ELY]

-0

0133% ¢ 1 a

s

153

204

55

357

45y

ste

Sbt
[Xp!

3

Ty
ns
14

67
o
aq
1620

1071
tx

"I |

UN = W® N

INKXECCHWTIDIOIINAURITIOONMMNUOIOW D =« BN WASD

39 40

APPENDIX C -~ ERROR CODES
33033333 HTI I XX

AprENDIx 3 - Kevuornos cooe _emeon | ommeriew .
339 3 3 3 I 3 3 I 3 30 3 3 3 g NF "NEXT* prior to FOR
1 SN Syntax
> ARROW V ARROW WORD KEY WORD KEY 2 RG "RETURN" before *GOSUB*®
[T TETTTTTTTTTTTEI AT B iy F T R 3 ap Qut of data
L FC Invalid parameter
core sosus ey | ey s
EDIT AUDIO AUDIO - v LOAD cv 8 oM Qut of memary
7 ut Undefined line #
GET UMLOAD AUTO 1 HERGE NV 8 BS Invalid subscript in array
PUT BACKUP BACKUP 7 V MID®(J Vv 9 DD Redimensicned array
2, U - S R R b
RUN KEY CIRCLE(M > ON P> H ID Invatid command
CONT FREE{ CLEAR : > OPEN av 12 ™ Type mismatch
° 13 0s Out of string space
REPEAT OPEN CLOSE S5 Vv OFF Lt > 14 LS Overlong string
ﬁ:;IL EESSE ZBEOR z ; zgé:T(g : 13 ST Overcomplex % operation
156 CN Cannot cantinue
i:g gg:;m gg:: 3 C z:S;E ; ; 12 FD Data out of sequence
18 AQ File already cpened
PROC SCR DATA u > POKE P > 19 DN Wrong device M
CLEAR DIM DEF ? > PRINT A D) 29 10 Input/Output error
ON A USING DIM HERY PROC ? > 21 M F{le mismatech
::;:1 STﬁl:g’(D;R z g PUT 70 22 MO File not opened
SCREEN tgAg gR?:E Y zgazns ; C 23 I& Reading past file end
! 24 DS Missing Line #
INPUT INKEYS DSKI® R V RENUM 8 Vv 25 UF Undefined function
STEP DSKO% DSKOs E V REPEAT 4 > 24 NE Nonexistent file
N O I AN RO MR s
SOUND RIGHTS(. END 7 RIGHTS(H V 28 oF Disk 1s full
29 0B Out of buffer space
READ JOYSTK(ENVELOPEF > RND ¢ w Vv =g we Disk is write protected
PLAY MIDS{ EoF D v RUN 2> 31 FN Unacceptable file name
MOTOR HEXS (FOR Q > SAVE X Vv 32 FsS Bad file structure
oFF INSTR(FREE(SV SCR 7V 33 AE Already existing 4ile
CIRCLE(VERIFY GET . > SCREEN C > 34 FO Field length overflow
LINE MERGE GOSUB v SET v D
33 SE String not fielded
POk PEEK 1 GExe(kv | ster E 36 e Veritication errar
FOR 10 1F R> | STR$t sV 3 e e et e]
IF DSKI1s INKEYS D V STRINGS (A V
WRITE STRS (INPUT D > THEN T >
THEN LEN(INSTR(C L V TO Qv
DATA ASC (INTH(ov UNLOAD ., V
SET KILL JOYSTK(1 V UNTIL 3>
NEXT RND{ KEY 2V USING 1 v
COLOR SAVE KILL v Vv VAL (Y Vv
ELSE VAL (LEFT£t G V VERIFY M V
PMODE DIR LEN(TV WRITE s >

41

APPENDIX D - SAMPLE DEFINING ENVELOPE PROCEDURE
I IS I 3 36 3 I 3 3 I 3 3 I

You are invited to include one or other of these envelopes to
produce certain socund effects in your programs:

62992 DEFPROCdefine envelopes

49999 'Horn

699310 EMVELOPEL31,359,111,206,110,0,040,0,0
62919 *Alarm

42020 EMVELOPE23!1,50,110,0,419,08,4i1,206,1
699329 'Hooter

9938 ENVELOPE3:9,200,130,206,440,0,010,0,0
69839 'Harpsichord

69949 ENVELOPE4;9,255,255;9,0,0;0,0,010,0,0
629249 'Violin

68958 ENVELOPES;d,1,25530,0,25510,0,010,0,0
68959 ’Siren

68269 ENVELOPES)L,P,2553255,0,25519,0,0;0,0,9
62869 'Trill

48078 ENVELOPE?;P,0,9310,0,21246,0,2:19,0,10
68879 'Foghorn

620880 ENVELOPES)49,200,3188,129,311,1,2;236,100,3
60893 ENDPROC

42

APPENDIX E - ALPHANUMERIC CODE
I 330 I 3 M3 3

The alphanumeric code of graphic characters is the same as the
ASCIll code -- see page 276 of “"Getting Started with Color
BASIC® in order to work out the code of a graphic character.

The following list gives the codes for reverse video characters,
Incidentally , one way derive the normal character codes by
adding &4 to the numbers appearing below:

CHAR. CODE CHAR. CODE
e P4 32
A 1 ! 33
B 2 . 34
c 3 # 35
D 4] 36
E s % 37
F & L 38
G 2 ' 39
H 8 t Y]
1 9) 41
3 19 * 42
K 11 + 43
L 12 44
M 13 - 45
N 14 : 46
0 15 / 47
P 16 o 48
Ir] 12 1 49
R 18 2 1]
s 19 3 51
T 29 4 52
u 21 3 s3
v 22 & 34
W 23 7 55
X 24 8 sé
Y 25] 52
z 26 : sa
4 27 [59
\ 28 < Py}
3 29 - 61
~ 39 > 62
< 3t ? 63
SR R —— b m e -

43

F - SYNTAX OF EXPANDED BASIC
A o0 NN IR

Syntax wiords

AUTO - automatic line numbering for programs
BEEP - sounds a previously defined envelope
BORDER - draws border on text screen

CHR® - can redefine a character

CONTERROR ~ causes an error upon (BREAK>
CONTOFF - disables (BREAK)>

CONTCN - enables (BREAK)»

DEFPROC - defines start of procedure

EMNDIF - to end a multiline IF..THEM..ELSE statement

EMDPROC - returns from a procedure
ENVELOPE - defines spund envelope
ERRDR - causes an error

ERROROFF - disables a previously activated error trap
FILL - fills area of memory with specified character
GOSUB - calls subroutine: variables can now be used

GOTO - goes to a line: variables can now be used
KEY - defines function key

KEYSCR - changes autokey repeat

MCOPY - copies memory block into another section

NEW - can reserve more than 8 graphic pages
OMERROR - defines error trap

POINT(Q1) - returns color of point on @-screen
PROC - calls a procedure

PSCR - acrolls the graphic screen

QCLS - clears the Q-screen to specified color mix
80FF - changes video output to text ascreen

Q0M - changes video output to @-screen

GPRINT - prints a string on the Q-screen

QRESET - sets a point to black on the G-screen
@SCR - scrolls the @-screen

QSET - sets a dot on the @-screen

REPEAT - defines start of REPEAT...UNTIL loop
REV - reverses the video text screen

SCR - scrolls the text screen

TEXTOFF - changes display to graphics screen
TEXTON - changes display to text screen

UNTIL - repeats a loop until a condition is true
WIDTH - defines width of printer ocutput

Fage
Pace
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

29
14
19
16
12
12
12

14
12
13
20
21
21
23
24
29
19
12
28

18
27
27
27
29
28
29
27
?

29
12
4

?
25

o
et

Extra commands

.DELLOC - clears all previously localised variables
.L.LOC - localises one or more variables
.string - executes a string as a command

Star commands

¥SI1ZE(S1x24) - go into '31ix24' state

#¥SIZE(32x16) - go into '32x14' state

#EXTRA - load in extra commands

#COM(E) - load in editor/helper commands (for CoCo #1)
#COMIQ) - load in R-screen commands {for CoCo #1}

#COM(G) - load in graphic screen (for Coco #1)

STAR COMMANDS ARE COMMANDS THAT ARE STORED ON DISK,

Page
Page
Page

Page
Page
Page
Page
Page
Page

dbobUGW

-

