COLOR COMPUTER
DISK EDITOR ASSEMBLER WITH ZBUG

CUSTOM MANUFACTURED
IN USA BY RADIO SHACK
A DIVISION OF TANDY CORPORATION

J

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A
RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY

CUSTOMER OBLIGATIONS

A

CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the “Equipment”’), and any copies of Radio
Shack software included with the Equipment or licensed separately (the “‘Software’) meets the specifications, capacity, capabilities,
versatility, and other requirements of CUSTOMER.

CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation.

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A

C.
D.
E.

For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upen purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY 1S ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void if the Equipment’s case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is fimited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole
expense. RADIO SHACK has no obligation to replace or repair expendable items.

RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this
paragraph. Software is licensed on an “AS IS™" basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radic Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK.

Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow limitations on how fong an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER

LIMITATION OF LIABILITY

A.

EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
"EQUIPMENT"" OR "SOFTWARE SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE "EQUIPMENT" OR “SOFTWARE"". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT" OR "'SOFTWARE'".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR “EQUIPMENT" OR “*SOFTWARE"
INVOLVED.

RADIO SHACK shall not be fiable for any damages caused by delay in delivering or furnishing Equipment and/or Software.

No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years
after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs.

Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer, subject to the following
provisions:

B.
C
D.

G.

Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.

Title to the medium on which the Software is recorded (cassette andor diskette) or stored (ROM) is transferred to CUSTOMER, but not title to
the Software.

CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this
function.

CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically
provided in this Software License. Customer is expressly prohibited from disassembiing the Software.

CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in
the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.

CUSTOMER may resel! or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER

Alt copyright notices shall be retained on ali copies of the Software

APPLICABILITY OF WARRANTY

A

The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK. the author. owner and-or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary
from state to state.

COLOR COMPUTER
DISK EDITOR ASSEMBLER WITH ZBUG

CUSTOM MANUFACTURED
IN USA BY RADIO SHACK
A DIVISION OF TANDY CORPORATION

J

Disk EDTASM Software: Copyright 1983, Microsoft. All
Rights Reserved. Licensed to Tandy Corporation.

Disk EDTASM Manual: Copyright 1983, Tandy Corporation.
All Rights Reserved.

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is prohib-
ited. While reasonable efforts have been taken in the prep-
aration of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors or
omissions in this manual, or from the use of the information
contained herein.

To Our Customers. ..

The heart of the Color Computer is a 6809E “proces-
sor.” It controls all other parts of the Color Computer.

The processor understands only a code of Os and 1s,
not at all intelligible to the human mind. This code is
called “6809 machine code.”

When you run a BASIC program, a system called the
“BASIC Interpreter” translates each statement, one at a
time, into 6809 machine code. This is an easy way to
program, but inefficient.

The Disk EDTASM lets you program using an intelligible
representation of 6809 machine code, called “assembly
language,” that talks directly to the processor. You then
assemble the entire program into 6809 machine code
before running it.

Programming with the Disk EDTASM gives you these
benefits:

® You have direct and complete control of the Coior
Computer. You can use its features — such as high
resolution graphics — in ways that are impossible with
BASIC.

® Your program runs faster. This is because it is already
translated into 6809 machine code when you run it.

To Use the Disk EDTASM
You Need ...

A Color Computer Disk System that has at least 16K of
RAM, preferably 32K. (A 16K System will leave you little
room for programs.)

The Disk EDTASM
Contains:

e EDTASM/BIN, a system for creating 6809 programs.

EDTASM contains:

An editor, for writing and editing 6809 assembly-
language programs.

An assembler, for assembling the programs into
6809 machine code.

ZBUG, for examining and debugging 6809
machine-code programs.

You must have 32K to run EDTASM. If you have 16K,
run EDTASMOV (described next).

e EDTASMOV/BIN, a memory-efficient version of
EDTASM consisting of overlays. EDTASMOV con-
tains the editor and assembler, but not ZBUG.

e ZBUG/BIN, a stand-alone version of ZBUG, primarily
for use with EDTASMOV.

e DOS/BIN, a disk operating system. DOS contains disk
access routines that you can call from an assembly
language program. (You cannot call BASIC's disk ac-
cess routines with any program other than BASIC.)

EDTASM/BIN, EDTASMOV/BIN, and ZBUG/BIN all
use DOS routines and must be run with DOS.

The Disk EDTASM also contains:
e DOS/BAS. A BASIC program that loads DOS/BIN.
® ZBUG/BAS. A BASIC program that loads ZBUG/BIN.

How to Use this Manual

This manual is ’organized for both beginning and ad-
vanced assembly language programmers. Sections I-IV
are tutorials; Section V is reference.

Beginning Programmers:

Read Section | first. it shows how the entire system
works and explains enough about assembly language to
get you started.

Then, read Sections II, lll, and [V in any order you want.
Use Section V, “Reference,” as a summary.

This manual does not try to teach you 6809 mnemonics.
To learn this, read:

Radio Shack Catalog #62-2077
by William Barden Jr.

6809 Assembly Language Programming
by Lance A. Leventhal

Nor does it teach you disk programming concepts. To
learn these, read:

Color Computer Disk System Manual
(Radio Shack Catalog #26-3022)

Advanced Programmers:

First, read Chapters 1 and 2 to get started and see
how the entire system works. Then, read Section V,
“Reference.”

You can use the DOS program listing to obtain informa-
tion on routines and addresses not explained in this
manual. Please note the following:

Radio Shack supports only these DOS routines:
OPEN, CLOSE, READ, and WRITE. Additional
DOS routines are listed in Reference H. However,
Radio Shack does not promise to support them.

Even more DOS routines and addresses can be
found in the program listing. However, Radio Shack
does not promise to support them nor even provide
them in the future.

For technical information on the Color Computer Disk
System and 6809, refer to 6809 Assembly Language
Programming and Color Computer Disk System Manual,
listed above.

This manual uses these
terms and notations:

KEY To denote a key you must press.
Italics To denote a value you must supply.
filespec To denote-a DOS file specification. A DOS

filespec is in one of these formats:

filename/ext:drive
filename.ext:.drive

filename has one to eight characters.
extension has one to three characters.

drive is the drive number. If the drive num-
ber is omitted, DOS uses the first available
drive.

$ To denote a hexadecimal (Base 16) num-
ber. For example, $0F represents hexa-
decimal OF, which is equal to 15 in decimal
(Base 10) notation.

Contents

Section I/ Getting Started

Chapter 1/ Preparing Diskettes................... 3
Chapter 2/ Running a Sample Program 5
Chapter 3/ Overview............................ 9

Section I/ Commands

Chapter 4/ Using the DOS Menu

(DOS Commands).................... 15
Chapter 5/ Examining Memory

(ZBUG Commands — Part!) 17
Chapter 6/ Editing the Source Program :

(Editor Commands)................... 21
Chapter 7/ Assembling the Program

(Assembler Commands)............... 25
Chapter 8/ Debugging the Program

(ZBUG Commands — Part il).......... 31
Chapter 9/ Using the ZBUG Calculator

(ZBUG Commands — Part Hl) 35

Section lll/
Assembly Language

Chapter 10/ Writing the Program 41
Chapter 11/ Using Pseudo Ops 47
Chapter 12/ UsingMacros. 51

Section IV/ ROM
and DOS Routines

Chapter 13/ Using the Keyboard and Video Display

(ROM Routines)..................... 57
Chapter 14/ Opening and Closing a Disk File

(DOS Routines — Partl)............. 61
Chapter 15/ Reading and Writing a Disk File

(DOS Routines — Part) 65

Section V/ Reference

A/ EditorCommands...........c.oooeunnnni. 71
B/ Assembler Commands and Switches 75
C/ ZBUG Commands.cvuuueeunnnnnn ... 77
D/ EDTASM Error Messages.................... 81
E/ Assembler Pseudo Ops...................... 85
F/ ROM Routines. e e 89
G/ DOS Data Control Block (DCB) 91
H DOSRoutines 95
/' DOSErmorCodesoouuuuueououoo i, 101
JoMemoryMap, 103
K/ ASCH Codescoouuu i, 105
L/ 6809 Mnemonics................c.cviii. .. 109
M/ Sample Programs 125

Section VI/ Program Listing

Index

SECTION |

GETTING STARTED

EDiASM

SECTION 1|

GETTING STARTED

This section gets you started using the Disk
EDTASM and explains some conceptis you
need to know.

EDTASM

Chapter 1/ Preparing Diskettes

Before .using the Disk EDTASM, you need to format 2. At the BASIC OK prompt, type:
z::lz\:nil.skettes and back up the master Disk EDTASM BACKUP @ TO © (ENTER
3. BASIC then prompts you to insert the “destination”
diskette. Remove the source diskette and insert a

Formatting Blank Diskettes formatted diskette. Press
4. BASIC prompts you to alternatively insert the
1. Power up your disk system and insert a blank disk- source, then destination diskettes. When the back-
ette in Drive 0. (See the Color Computer Disk Sys- up is finished, the OK prompt appears.
tem Manual for help.) The destination diskette is now a duplicate of the master
2. At the OK prompt, type: Disk EDTASM diskette.

DSKINI® (ENTER

Iti-Dri
BASIC formats the diskette. When finished, it again Multi-Drive SyStems

shows the OK prompt. 1. Insert the master Disk EDTASM diskette in Drive 0.
2. Insert a formatted diskette in Drive 1.
Making Backups 3. At BASIC's OK prompt, type:
of Disk EDTASM BACKUP @ TO 1 ETER
BASIC makes the backup. When the backup is
Single-Drive Systems finished, the OK prompt appears.

1. Insert the master Disk EDTASM diskette, your E?sek‘:z'f)kfxg,wd?sra’:n;_'s now a duplicate of the master

“source” diskette, in Drive 0.

Chapter 2/
Running a Sample Program

This “sample session” gets you started writing programs
and shows how to use the Disk EDTASM. The next
chapters explain why the program works the way it does.

1. Load and Run DOS

Insert the Disk EDTASM diskette in Drive 0. At the OK
prompt, type:

RUN "DOS"

DOS then loads and puts you in its “command mode.”
The screen shows the DOS command menu:

1, Exit to BASIC

2, Exec a Program

3+, Start Clock Disrlavy
4, Disk Allocation Mar
S5+, Copry Files

6+ Directory

DOS consists of many disk input and output routines
which EDTASM uses. You must load DOS before load-
ing EDTASM.

2. Load and Run EDTASM

At the DOS Menu, press (2) to select “Execute a Pro-
gram.” The screen asks for the name of a program file.

If your system has 32K or more, use EDTASM. If it has
only a 16K system, use EDTASMOV.

Loading EDTASM:
Type EDTASM. The screen shows:

EXECUTE A PROGRAM
PROGRAM NAME: [EDTASM 3/BIN

If you make a typing error, use the (=) to reposition the
cursor at the beginning of the line, then correct the mis-
take. Replace any trailing characters with blank spaces.

Press (ENTER). EDTASM loads and shows its startup
message.

Loading EDTASMOV:
Type EDTASMOV. The screen shows:

EXECUTE A PROGRAM
PROGRAM NAME: T[EDTASMOVI/BIN

If you make a mistake, use the (=) to reposition the cur-
sor, then correct the mistake.

EDTASMOV loads and shows its startup message.

Always keep EDTASMOV in Drive 0. it contains overlays
which it loads into memory as required. It always looks
for these overlays in Drive 0.

3. Type the Source Program

Notice the asterisk (*) prompt. This means you are in the
editor program of EDTASM or EDTASMOV. The editor
lets you type and edit an assembly language “source”
program.

At the * prompt, type:
I

This puts you in the editor’s insert mode. The editor re-
sponds with line number 00100. Type:

START (= LDA (= #$F9 (ENTER

The right arrow tabs to the next column. (ENTER) inserts
the line in the editor’s “edit buffer.” The $ means that F9
is a hexadecimal (Base 16) number.

EDASM

2 / RUNNING A SAMPLE PROGRAM

Your screen should show:

po100 START LDA #$F9
00110

meaning that you inserted line 100 and can now insert
line 110.

If you make a mistake, press (BREAK). Then, at the *
prompt, delete Line 100 by typing:

D120 (ENTER

Now, insert Line 100 correctly in the same manner
described above.

Insert the entire assembly language program listed
below.

Note that line 150 uses brackets. Do not substitute
parentheses for the brackets. To produce the left
bracket, press and () at the same time. To
produce the right bracket, press and (=) at
the same time.

0100 START LDA #4F9
0110 LDX #4400
02120 SCREEN 5TA s X+
20130 CHMPX #4600
o140 BNE SCREEN
08150 WAIT JSR [4A000]
0160 BEW WAIT
0017@ CLR $71
20180 JMP [$FFFE]
00190 DONE EQU *

o0z200 END

If you make a mistake, press (BREAK). Then, at the *
prompt, delete the program by typing:

D#:x
Now, insert the program correctly.

When finished, press (BREAK). The program you have in-
serted is an assembly language *source” program,
which we’ll explain in the next chapter.

4. Assemble the Source
Program in Memory

At the * prompt, type:
A/ IM/WE (ENTER

which loads the assembler program. The assembler then
assembles your source program into 6809 machine code

into the memory area just above the EDTASM or
EDTASMOV program. To let you know what it has done,
it prints this listing:

4B28 86 Fa 02108 START

LDA #%F9
4B2A BE 2400 o110
LDX #5400
4aB2D A7 890 02120 SCREEN
STA s K+
482F 8C 2600 00130
CMPX #5500
a3z 26 F9 20140
BNE SCREEN
a34d AbD 9F A0Qe 20158 WAIT
JER [$AB00]
4B38 27 FA 20160
BEQ WAIT
4B3A OF 71 20170
CLR $71
4B3C BE 9F FFFE 201890
JMP [{$FFFE]
4B4¢@ 0019¢ DONE
EQU *
3 drd POZ00
END
0200 TOTAL ERRORS
DONE 4849
SCREEN 4BZD
START 4B28
WAIT 4834

(If using EDTASMOV, the numbers will be different.)

If the assembler does not print this entire listing, but
stops and shows an error message instead, you have an
error in the source program. Repeat Steps 3 and 4.

The assembler listing is explained in Figure 1 of
Chapter 7.

5. Prepare the
Program for DOS

Before saving the program, you need to prepare it so
that you can load and run it from DOS.

First, you must give it an “origination address” for DOS
to use in loading the program back into memory. (We
recommend you use Address $1200, the first address

available after the DOS system.) To do so, type:
150 (ENTER)

and insert this line:
S0 ORG $1200

Next, you need to add two lines to your program to tell
DOS how long the program is. Insert these lines:

60 BEGIN JMP START
70 FDB DONE-BEGIN

When finished, press (BREAK). To see the entire program,
type:

P#: % (ENTER
It should look like this:

20050 ORG $1200
20060 BEGIN JMP BTART
00070 FDB DONE-BEGIN
Q0100 START LDA #%F9
0110 LDX #%$400
08129 SCREEN STA p X+
00130 CMPX #$G600
00140 BNE SCREEN
00150 MWAIT JSR [$A02Q]
00160 BEW WAIT
ov170 CLR %71
00180 JMP [$FFFE1
2190 DONE EQU %

0200 END

If you make a mistake, delete the line with the error
and insert it again.

6. Save the Source
Program on Disk

To save the source program, type (at the * prompt):
WD SAMPLE

This saves the source program on disk as SAMPLE/
ASM.

7. Save the Assembled
Program on Disk

At the * prompt, type:
AD SAMPLE /SR (ENTER

Be sure you have a blank space between SAMPLE and
/SR. This causes the assembler to again assemble the
source program into 6809 code. This time, the Assem-
bler saves the assembled program on disk as SAMPLE/
BIN.

(You must use the /SR “switch” to assemble any pro-
gram that you want to load and run from DOS.)

8. Run the Assembled
Program from DOS

To run the assembled program, you need to be in the
DOS command mode. At the * prompt, type:

K (ENTER)

which causes the Editor to return you to the DOS com-
mand menu. Press (2) to execute a program. Then type
SAMPLE, the name of the assembled program. (The
assembler assumes you mean SAMPLE/BIN.) The
screen shows:

EXECUTE A PROGRAM
PROGRAM NAME: [SAMPLE 1/BIN

Press (ENTER. The SAMPLE program executes, filling
your entire screen with a graphics checkerboard.

Press any key to exit the program. The program returns
to BASIC startup message.

9. Debug the Program
(if necessary)

ZBUG lets you to look at memory. How you load ZBUG
depends on whether you are using EDTASM or EDTAS-
MOV.

EDTASM Users:

You can load ZBUG from EDTASM. Load DOS and
EDTASM again (Steps 1 and 2). Then, at the * prompt,

type:
Z (ENTER

EDTASM loads its ZBUG program and displays ZBUG's
prompt. You can now eéxamine any memory address.

Type:
4000/

EDIASM

2 / RUNNING A SAMPLE PROGRAM

and ZBUG shows you what is in memory at this address.
Press (1) a few times to look at more memory addres-
ses. When finished, press (BREAK).

In Chapter 8, we'll show you how to use ZBUG to ex-
amine and test your program. To return to EDTASM’s
editor, type:

E (ENTER

EDTASMOYV Users:

You must use the Stand-Alone ZBUG. Load DOS again
(Step 1). At the DOS Menu, press (2), “Execute a Pro-
gram,” and run the ZBUG program. After typing ZBUG,
the screen shows:

EXECUTE A PROGRAM
PROGRAM NAME: [ZBUG J/BIN

DOS loads the stand-alone ZBUG and displays ZBUG's
prompt. You can now examine any memory address.
Type:

3800/

and ZBUG shows you what is in memory at this address.
Press (3) a few times to look at more memory addres-
ses. When finished, press BREAK).

In Chapter 8, we’ll show you how to use ZBUG to ex-
amine and test your program. To return to DOS, type:

K (ENTER)

Chapter 3/ Overview

This chapter is for beginning assembly language pro-
grammers. It explains some concepts you need. If you're
not a beginner, use this chapter as a refresher or skip it.

The Color
Computer Hardware

The Color Computer consists of:

e The 6809E Processor
e Memory
e Input/Output Devices

This shows how they relate to each other:

/0 /0
device device
Memory
|
Processor
/O /0
device device

The Processor

The processor processes all data going to each memory
address and device. It contains:

® Registers — for temporarily storing 1- or 2-byte
values.

e Buses — for transferring data to or from the processor.

All instructions to the processor must be in 6809
machine code: a code of Os and 1s containing
“opcodes” and data. “Opcodes” are instructions that tell
the processor to manipulate data in some way.

For example, the machine-code instruction *10000110
11111001” contains:

e The opcode “10000110” (decimal 134 or hexadecimal
86)

e The data “11111001” (decimal 249 or hexadecimal
F9)

This instruction tells the processor to load Register A
with 11111001.

Memory

Memory is a storage area for programs and data. There
are two kinds of memory:

e Random access memory (RAM) — for temporary stor-
age of programs or data. When you load a program
from disk, you load it into RAM. Many opcodes store
data in RAM temporarily.

e Read only memory (ROM) — for permanent storage
of programs. BASIC, as well as any program pack you
use, is stored in ROM. The Color Computer contains
several “ROM routines” that you can use to access
the keyboard, screen, or tape recorder.

When writing an assembly language program, you must
constantly be aware of what's happening in memory. For
this reason, this manual provides a memory map. (See
Reference J.)

Devices

All other parts of the hardware are called devices. A de-
vice expects the processor to input or output data to it in
a certain format. To input or output data in this format,
you can use these pre-programmed subroutines:

EDIASM

3/ OVERVIEW

¢ Routines stored in ROM (ROM routines) — for input-
ting or outputting to the keyboard, screen, printer, or
tape recorder.

e Routines stored in DOS (DOS routines) — for input-
ting or outputting to disk.

The Disk EDTASM
Assembler

The Disk EDTASM looks for three fields in your instruc-
tions: label, command, and operand. For example, in this
instruction:

BEGIN JMP START

BEGIN is the label. JMP is the command. START is the
operand.

In the label field, it looks for:
e Symbols (symbolic names)
In the command field, it looks for:

® Mnemonics
® Pseudo Ops

In the operand field, it looks for:

e Symbols

e Operators

® Addressing-Mode Characters
e Data

Symbols

A symbol is similar to a variable. it can represent a value
or a location. BEGIN (in the sample session) is a symbol
that represents the location of the instruction JMP
START. START is also a symbol that represents the
location of LDA #$F9.

Mnemonics

A mnemonic is a symbolic representation of an opcode.
It is a command to the processor. “LDA” is a mnemonic.
Depending on which “addressing-mode character” you
use, LDA represents one of these opcodes:

10000110
10010110
10110110
10100110

(Addressing-mode characters are discussed below.)

Mnemonics are specific to a particular processor. For ex-
ample, Radio Shack’s Model 4 uses the Z80 processor,
which understands Z80 mnemonics, rather than the
6809 mnemonics.

Pseudo Ops

A pseudo op is a command to the assembler. END (in
the sample session) is a pseudo op. It tells the assem-
bler to quit assembling the program.

Data

Data is numbers or characters. Many of the mnemonics
and pseudo ops call for data. Unless you use an oper-
ator (described next), the assembler interprets your data
as a decimal (Base 10) number.

Operators

An operator tells the assembler to perform a certain op-
eration on the data. In the value $1200, the $ sign is an
operator. it tells the assembler that 1200 is a hexadeci-
mal (Base 16) number, rather than a decimal (Base 10)
number.

The more commonly used operators are arithmetic and
relational. Addition (+) and equation (=) are examples
of these operators.

Addressing-Mode Characters

An addressing mode character tells the assembler how it
should interpret the mnemonic. The assembler then
assembles the mnemonic into the appropriate opcode.

The sample session uses the # character with the LDA
mnemonic to denote the “immediate” addressing mode.
This causes the assembler to assemble LDA into the
opcode 10000110.

The immediate mode means that the number following
the mnemonic (in this case, $F9) is data rather than an
address where the data is stored.

Pseudo ops, symbols, operators, and addressing-mode
characters vary from one assembler to another. Section
11l explains them in detail.

10

Sample Program

This is how each line in the sample program works:
50 DRG %1200

ORG is a pseudo op for “originate.” It tells the assem-
bler to begin loading the program at Location $1200
(Hexadecimal 1200). This means that when you load
and run the program from DOS, the program starts at
Memory Address $1200.

G0 BEGIN JMP START

BEGIN is a symbol. It equals the location where the JMP
START instruction is stored.

JMP is a mnemonic for “jump to an address.” It causes
the processor to jump to the location of the program
labeled by the symbol START, which is the LDA #$F9
instruction. You must use JMP or LBRA as the first in-
struction in a DOS program.

79 FDB DONE-BEGIN

FDB is a pseudo op for “store a 2-byte value in mem-
ory.” It stores the value of DONE-BEGIN (the length of
the program) in the next two bytes of memory. You must
store this value at the beginning of the program to tell
DOS how much of the program to load.

po100 START LDA #%$F9

START is a symbol. It equals the location where LDA
#8$F9 is stored.

LDA is a mnemonic for “load Register A.” It loads Regis-
ter A with $F9, which is the hexadecimal ASCII code for
a graphics character. The ASCIl characters are listed in
Reference K.

0110 LDX #$400

LDX is a mnemonic for “load Register X.” It loads Regis-
ter X with $400, the first address of video memory. Ref-
erence J shows where video memory begins and ends.

001290 SCREEN 5TA

SCREEN is a symbol. It equals the location where STA
X+ is stored.

PR+

STA is a mnemonic for “store Register A.” It stores the
contents of Register A ($F9) in the address contained in
Register X ($400). This puts the $F9 graphics character
at the upper left corner of your screen.

The “,” and “+" are addressing-mode characters. The ,
causes the processor to store $F9 in the address con-

tained in Register X. The + causes the processor to
then increment the contents of Register X to $401.

00130 CMPX #3600

CMPX is a mnemonic for “compare Register X.” It com-
pares the contents of Register X with $600. If Register X
contains $600, the processor sets the “Z” bit in the Reg-
ister CC to 1.

p0140 BNE SCREEN

BNE is a mnemonic for “branch if not equal.” It tells the
processor return to SCREEN (the STA,X+ instruction)
until the Z bit is set.

The BNE SCREEN instruction creates a loop. The pro-
gram branches back to SCREEN, filling all video mem-
ory addresses with $F9, until it fills Address $600. At that
time, Register X contains $600, Bit Z is set, and program
control continues to the next instruction.

pa150 WAIT JSR [$A0001]

JSR is a mnemonic for “jump to a subroutine.” $A000 is
a memory address that stores the address of a ROM
routine called POLCAT. (See Reference F.)

POLCAT scans the keyboard to see if you press a key.
When you do, it clears the Z bit.

The “[1" are addressing-mode characters. They tell the
processor to use an address contained in an address,
rather than the address itself. Always use the ‘[]” signs
when calling ROM routines.

20160 BEQ WAIT

BEQ is a mnemonic for “branch if equal.” It branches to
the JSR [$A000] instruction until the Z bit is clear. This
causes the program to loop until you press a key, at
which time POLCAT clears the Z bit.

00179 CLR %71
02180 JMP [$FFFE]

CLR is a mnemonic for “clear,” and JMP is a mnemonic
for “jump to memory address.” These two instructions
end the program and return to BASIC’s startup mes-
sage.

(CLR inserts a zero in Address $71; this signals that the
system is at its original “uninitialized” condition. JMP
goes to the address contained in Address $FFFE; this is
where BASIC initialization begins.)

poi80 DONE EQU

EQU is a pseudo op. It equates the symbol DONE with
an asterisk (*), which represents the last line in the
program.

11

EDTASM

3/ OVERVIEW

92199 END

END is a pseudo op. It tells the assembler to quit
assembling the program.

12

SECTION 1I

COMMANDS

EDIASM

Section I

COMMANDS

This section shows how to use the many
Disk EDTASM commands. Knowing these
commands will help you edit and test your
program.

13

Chapter 4/ Using the DOS Menu
(DOS Commands)

When you first enter DOS, a menu of six DOS com-
mands appear on the screen. Chapter 2 shows how to
use the first two DOS commands. This chapter shows
how to use the remaining commands:

o Start Clock Display
® Disk Allocation Map
e Copy Files

e Directory

To use the examples in this chapter, you need to have
the SAMPLE disk files, which you created in Chapter 2,
on the diskette in Drive 0.

Directory

The DOS “directory” command lets you select the direc-
tory entries you want to see, using three fields: filename,
extension, and drive number.

To select the directory entries, press (6) at the DOS
Menu. Then, press the (1) to move the cursor left or ()
to move right.

Type this line to select all directory entries that have the
filename SAMPLE.

[SAMPLE*%*] [**%]1 :[Q) <FILE SPEC

Use the (SPACEBAR) to erase characters. Press (ENTER
when finished. Then, press any key to return to the DOS
menu, and press (8) to return to the directory.

Type this line to select all directory entries with the ex-
tension /BIN:

[*xxx%x%%]1 [BIN] :[Q] <FILE SPEC
Press (ENTER) when finished. Return to the main menu.

To see all directory entries on the disk in Drive 0, simply
press (ENTER) without specifying a filename or extension:

[**#xxxxxx] [#*%%] :[0] <FILE SPEC

Disk Allocation Map

The “disk allocation map” command tells you how much
free space you have on your diskettes. To see the map,
press (4) at the DOS menu.

DOS shows a map of the diskettes that are in each
drive. The map shows how each of the diskette’'s 68
granules is allocated:

® A period (.) means the granule is free.

® An X means all the sectors in the granule are currently
allocated to a file.

® A number indicates how many sectors in the granule
are currently allocated to a file.

Press any key to return to the DOS menu.

Copy Files

The “Copy Files” command makes a duplicate of a disk
file. To use it, press (5) at the DOS menu. DOS then
prompts you for the names of the files.

Single-Drive Copy

The first example copies SAMPLE/ASM to another file
named COPY/ASM. Use the (1) and (1) to position the
cursor. Answer the prompts as shown:

Socurce File Name [SAMPLE 1
Extension LASM]
Drive (a1

Destination File Name [COPY]
Extension [LASM]
Drive [ol

If Drives are the same are
using different disKettes?
(Y or N7 [N]

you

15

4 / USING THE DOS MENU

When finished, press (ENTER. DOS copies SAMPLE/
ASM to a new file named COPY/ASM and then returns
to the DOS menu. Check the directory (by pressing (6))
and you'll see that both SAMPLE/ASM and COPY/ASM
are on your diskette.

The next example copies SAMPLE/ASM to another disk-
ette. Answer the prompts as shown:

Source File Name [SAMPLE 1]
Extension [ASM]
Drive [21]

Destination File Name [COPY]
Extension [LASM]
Drive [a3l

If Drives are the same are you
using different diskettes?
(Y or N7 [Y]

Press (ENTER). DOS then prompts you to insert the
source diskette. Press again.

DOS then prompts you for a destination diskette. Insert
the destination diskette and press (ENTER). After copying
the file, DOS prompts you for a system diskette. If you
press without inserting a system diskette, you will
get a SYSTEM FAILURE error.

When finished, it returns to the DOS menu.

Multi-Drive Copy

This example copies SAMPLE/ASM in Drive 0 to SAM-
PLE/ASM in Drive 1. Answer the prompts as shown:

Source File Name [SAMPLE 1
Extension [ASM]
Drive [l

Destination File Name [SAMPLE 1
Extension LASM]
Drive £1i1

If Drives are the same are vou
using different disKettes?
(Y or N7 [N

Start Clock Display

The Color Computer has a clock that runs on 60-cycle
interrupts. Since the clock skips a second or more when
the computer accesses tape or disk, we recommend that
you not use it while executing a program.

To use the clock, press (3), “Start Clock Display.” Six
digits appear at the upper right corner of your screen.
The first two are hours, the next are minutes, and the
next are seconds. This clock counts the time until you
exit DOS.

16

Chapter 5/ Examining Memory
ZBUG Commands — Part |

To use the Disk EDTASM, you must understand the
Color Computer’'s memory. You need to know about
memory to write the program, assemble it, debug it, and
execute it.

in this chapter, we’'ll explore memory and see some of
the many ways you can get the information you want. To
do this, we’ll use ZBUG.

If you are not “in” ZBUG, with the ZBUG # prompt dis-
played, you need to get in it now.

EDTASM: Load and run DOS, then execute the
EDTASM program. At the editor’'s * prompt, type

Z ENTER

EDTASMOV: Load and run DOS, then execute the
ZBUG program.

You should now have a # prompt on your screen. This
means you are in ZBUG and you may enter a ZBUG
command. All ZBUG commands must be entered at this
command level. You can return to the command level by

pressing or (ENTER).

Examining a
Memory Location

The 6809 can address 65,536 one-byte memory addres-
ses, numbered 0-65535 ($0000-$FFFF). We'll examine
Address $A000. At the # prompt, type:

B
to get into the “byte mode.” Then type:
AVRD/

and ZBUG shows the contents of Address $A000. To
see the contents of the next bytes, press (1). Use (1D to
scroll to the preceding address.

Continue pressing (3) or (). Notice that as you use the
(P the screen continues to scroll down. The smaller
addresses are on the lower part of the screen.

All the numbers you see are hexadecimal (Base 16).
You see not only the 10 numeric digits, but also the 6
alpha characters needed for Base 16 (A-F). Unless you
specify another base (which we do in Chapter 9), ZBUG
assumes you want to see Base 16 numbers.

Notice that a zero precedes all the hexadecimal num-
bers that begin with an alphabetic character. This is
done to avoid any confusion between hexadecimal num-
bers and registers.

Examination Modes

To help you interpret the contents of memory, ZBUG
offers four ways of examining it:

® Byte Mode

¢ Word Mode

® ASCIl Mode

e Mnemonic Mode

Byte Mode

Until now, you've been using the byte mode. Typing B
(ENTER), at the # prompt got you into this mode.

The byte mode displays every byte of memory as a num-
ber, whether it is part of a machine-language program or
data.

In this examination mode, the (3) increments the ad-
dress by one. The (F) decrements the address by one.

17

EDIASM

8 / EXAMINING MEMORY

Word Mode

Type to get back to the # prompt. To enter the
word mode, type:

W (ENTER

Look at the same memory address again. Press the ()
key a few times. In this mode, the (3D increments the
address by two. The numbers contained in each address
are the same, but you are seeing them two bytes or one
word at a time.

Press the (1) a few times. The (1) always decrements
the address by one, regardless of the examination
mode.

Look at Address $A000 again by typing:
Agoo/

Note the contents of this address “word.” This is the
address where POLCAT, a ROM routine, is stored.

Examine the POLCAT routine. For example, if $A000
contains A1C1, type:

AlCi/

and you'll see the contents of the first two bytes in the
POLCAT routine. We'll examine this routine later in this
chapter using the “mnemonic mode.”

ASCIl Mode

Return to the command level. To enter the ASCIl mode,
type:
A (ENTER

ZBUG now assumes the content of each memory
address is an ASCII code. If the “code” is between $21
and $7F, ZBUG displays the character it represents.
Otherwise, it displays meaningless characters or
“garbage.”

Here, the () increments the address by one.

Mnemonic Mode

This is the default mode. Unless you ask for some other
mode, you will be in the default mode.

Return to the # prompt. To enter the mnemonic mode
from another mode, type:

M (ENTER
Look at the addresses where the POLCAT routine is

stored. For example, if you found that POLCAT is at
address $A1C1, type:

ALCL/

Press the () a few times. In the mnemonic mode,
ZBUG assumes you're examining an assembly language
program. The (1) increments memory one to five bytes
at a time by “disassembling” the numbers into the mne-
monics they represent.

For example, assume the first two addresses in POL-
CAT contain $3454. $3454 is an opcode for the PSHS
U,X,B mnemonic. Therefore, ZBUG disassembles $3454
into PSHS U,X,B.

Begin the disassembly at a different byte. Press (BREA
and then examine the address of POLCAT plus one. For
example, if POLCAT starts at address $A1C1, type:

ALC2/

You now see a different disassembly. The contents of
memory have not changed. ZBUG has, however, inter-
preted them differently.

For example, assume $A1C2 contains a $54. This is the
opcode for the LSRB mnemonic. Therefore, ZBUG dis-
assembles $54 into LSRB.

To see the program correctly, you must be sure you are
beginning at the correct byte. Sometimes, several bytes
will contain the symbol “??". This means ZBUG can't
figure out which instruction is in that byte and is possibly
disassembling from the wrong point. The only way of
knowing you're on the right byte is to know where the
program starts.

Changing Memory

As you look at the contents of memory addresses, notice
that the cursor is to the right. This allows you to change
the contents of that address. After typing the new con-
tents, press or (3); the change will be made.

To show how to change memory, we’ll open an address
in video memory. Get into the byte mode and open
Address $015A by typing:

BREAK) B
2154/

Note that the cursor is to the right. To put a 1 in that
address, type:

1 (ENTER

18

If you want to change the contents of more than one
address, type:

D15A/
Then type:
ob (D

This changes the contents to DD and lets you change
the next address. (Press the () to see that the change
has been made.)

The size of the changes you make depends on the ex-
amination mode you are in. in the byte mode, you will
change one byte only and can type one or two digits.

In the word mode, you will change one word at a time.
Any 1-, 2-, 3-, or 4-digit number you type will be the new
value of the word.

If you type a hexadecimal number that is also the name
of a 6809 registers (A,B,D,CC,DP,X,Y,U,S,PC), ZBUG
assumes it's a register and gives you an “EXPRESSION
ERROR.” To avoid this confusion, include a leading zero
(0OA,0B, etc.)

To change memory in the ASCII mode, use an apos-
trophe before the new letter. For example, here's how to
write the letter C in memory at Address $015A. To get
into the ASCHl examination mode, type:

A (ENTER)

To open Address $015A,type:
B15A/

To change its contents to a C, type:
e CD

Pressing the (F) will assure you that the address con-
tains the letter C.

If you are in mnemonic mode, you must change one to
five bytes of memory depending on the length of the
opcode. Changing memory is complex in mnemonic
mode because you must type the opcodes rather than
the mnemonic.

For example, get into the mnemonic mode and open
Address $015A. Type:

M (ENTER)
P15A/

To change this instruction, type:
86 (ENTER)

Now Address $015A contains the opcode for the LDA
mnemonic. Open location 0158:

@158/
and insert $06, the operand:
26

Upon examining Address $015A again, you'll see it now
contains an LDA #6 instruction.

Exploring the
Computer’s Memory

You are now invited to examine each section of memory
using ZBUG commands to change examination modes.
Use the Memory Map in Reference J.

Don't hesitate to try commands or change memory. You
can restore anything you alter simply by removing the
diskette and turning the computer off and then on again.

19

EUiASM

Chapter 6/ Editing the Program
Editor Commands

The editor has many commands to help you edit your
source program. Chapter 2 shows how to enter a source
program. This chapter shows how to edit it.

To use the edit commands you must return to the editor
from ZBUG:

EDTASM: From EDTASM ZBUG, return to the edi-
tor by typing E (ENTER)

EDTASMOV: From Stand-Alone ZBUG, return to
the DOS menu by typing K (ENTER). Then, execute
the EDTASMOV program.

The screen now shows the editor's = prompt. While in
the editor, you can return to the * prompt at any time by
pressing (BREAK).

This chapter uses SAMPLE/ASM from Chapter 2 as an
example. To load SAMPLE/ASM into the editor, type:

L SAMPLE/ASM

Print Command
Prange

To print a line of the program on the screen, type:

P10¢ ENTER

To print more than one line, type:
P100:130

You will often refer to the first line, last line, and current
line (the last line you printed or inserted). To make this
easier, you can refer to each with a single character:

first line

* last line

® current line (the last line you printed or
inserted.)

To print the current line, type:

P. ENTER)

To print the entire text of the sample program, type:
Ps#:+ (ENTER
This is the same as P050:200 (ENTER).

The colon separates the beginning and ending lines in a
range of lines. Another way to specify a range of lines is
with . Type:

P# !5 ENTER)

and five lines of your program, beginning with the first
one, are printed on the screen.

To stop the listing while it is scrolling, quickly type:
c

To continue, press any key.

Printer Commands
Hrange
Trange

If you have a printer, you can print your program with the
H and T commands. The H command prints the editor-
supplied line numbers. The T command does not.

To print every line of the edit buffer to the printer, type:
Ha: %

You are prompted with:
PRINTER READY

Respond with when ready.

The next example prints six lines, beginning with line
100, but without the editor-supplied line numbers. Type:

T10@!6 (ENTER

Edit Command
Eline

You can edit lines in the same way you edit Extended

21

EDIASM

6 / EDITING THE SOURCE PROGRAM

COLOR BASIC lines. For example, to edit line 100, type:
E100

The new line 100 is displayed below the old line 100 and
is ready to be changed.

Press the (SPACEBAR) to position the cursor just after
START. Type this insert subcommand:

IED
which inserts ED in the line.
The edit subcommands are listed in Reference A.

Delete Command
Drange

if you are using the sample program, be sure you have
written it on disk before you experiment with this com-
mand. Type:

D112¢:140 (ENTER
Lines 110 through 140 are gone.

Insert Command
Istartline, increment
Type:

1152 ,2 ENTER

You may now insert lines (up to 127 characters long)
beginning with line 152. Each line is incremented by two.
(The editor does not allow you to accidently overwrite an
existing line. When you get to line 160, it gives you an
error message.)

Press to return to the command level. Then type:
1200

This lets you begin inserting lines at the end of the pro-
gram. Each line is incremented by two, the last incre-
ment you used.

Type:
I
The editor begins inserting at the current line.

On startup, the editor sets the current line to 100 and the
increment to 10. You may use any line numbers be-
tween 0 and 63999.

Renumber Command
Nstartline,increment

Another command that helps with inserting lines be-
tween the lines is N (for renumber). From the command
level, type:

N10@ ,50 (ENTER

The first line is now Line 100 and each line is in-
cremented by 50. This allows much more room for in-
serting between lines.

Type:
N (ENTER
The current line is now the first line number.

Renumber now so you will be ready for the next instruc-
tion. Type:

N1OD 10

Replace Command
Rstartline,increment

The replace command is a variation of the insert com-
mand. Type:

R10@ 3 (ENTER

You may now replace line 100 with a new line and begin
inserting lines using an increment of three.

Copy Command

Cstartline,range,increment

The copy command saves typing by duplicating any part
of your program to another location in the program.

To copy lines, type:
CS500,122:150 .10 (ENTER

This copies lines 100 to 150 to a new location beginning
at Line 500, with an increment of 10. An attempt to copy
lines over each other will fail.

ZBUG Command

The EDTASM system contains a copy of the stand-alone
ZBUG program. This allows you to enter ZBUG while
your program is still in memory.

EDTASMOV Users: You need to use the Stand-
Alone ZBUG program, as shown in Chapter 2.

22

To enter ZBUG, type:
Z
The # prompt tells you that you are now in ZBUG.

To re-enter the editor from ZBUG, type the ZBUG
command:

E (ENTER

If you print your program, you'll see that entering and
exiting ZBUG did not change it.

BASIC Command

To enter BASIC from the editor, type:
Q
If you want to enter DOS from the editor, type:
K
Entering DOS or BASIC empties your edit buffer. Re-
entering the editor empties your BASIC buffer.

Write Command
WD filespec

This command is the same one you used in Chapter 2 to
write the source program to disk. It saves the program in
a disk file named filespec. Filespec can be in one of
these forms:

filename/ext:drive
filename.ext:drive

The filename can be one to eight characters. It is
required.

The extension can be one to three characters. It is
optional. If the extension is omitted, the editor assigns
the file the extension /ASM.

The drive can be a number from 0 to 4. It is also option-
al. If the drive number is omitted, the editor uses the first
available drive.

Examples:
WD TEST (ENTER)

saves source file currently in memory as TEST/ASM.
WD TEST/PR!

saves the source file currently in memory as TEST/PR1.

Load Command
LD filespec
LDA filespec

This command loads a source filespec from disk into the
edit buffer. If the source filespec you specify does not
have an extension, the editor uses /ASM.

If you don't specify the A option, the editor empties the
edit buffer before loading the file.

if you specify the A option, the editor appends the file to
the current contents of the edit buffer.

Appending files can be useful for chaining long pro-
grams. When the second file is loaded, simply renumber
the file with the renumber command.

Examples:
LD SAMPLE:1

empties the edit buffer, then loads a file named SAM-
PLE/ASM from Drive 1.

LDA SAMPLE/PRO

loads a file named SAMPLE/PRO from the first available
drive, then appends to the current contents of the edit
buffer.

The editor has several other commands. These are
listed in Reference A.

Hints on Writing Your Program

e Copy short programs from any legal source available
to you. Then modify them one step at a time to learn
how different commands and addressing modes work.
Try to make the program relocatable by using in-
dexed, relative, and indirect addressing (described in
Section III).

e Try to write a long program as a series of short
routines that use the same symbols. They will be
easier to understand and debug. They can later be
combined into longer routines.

Note: You can use the editor to edit your BASIC pro-
grams, as well as assembly language programs. You
might find this very useful since the EDTASM editor is
much more powerful than the BASIC editor. You need
to first save the BASIC program in ASCII format:

SAVE filespec, A
Then, load the program into the editor.

23

EDIASM

Chapter 7/ Assembling the Program
(Assembler Commands)

To load the assembler program and assemble the
source program into 6809 machine code, EDTASM (or
EDTASMOYV) has an “assembly command.” Depending
on how you enter the command, the assembiler:

® Shows an “assembly listing” giving information on
how the assembler is assembling the program.

® Stores the assembled program in memory.
e Stores the assembled program on disk.
e Stores the assembled program on tape.

This chapter shows the different ways you can control
the assembly listing, the in-memory assembly, and the
disk assembly. Knowing this will help you understand
and debug a program.

The Assembly Command

The command to assemble your source program into
6809 machine code is:

Assembling in memory:
A /IM /switch2/switch3/ . . .
The /IM (in memory) switch is required.

Assembling to disk:
A filespec /switch1/switch2/ . . .

The assembled program is stored on disk as filespec. If
filespec does not include an extension, the assembler
uses /BIN.

Assembling to tape:

A filename /switch1/switch2/ . ..

The assembled program is stored on tape as filename.
The switch options are as follows:

/AO Absolute origin

/M Assemble into memory

/LP Assembler listing on the line printer
/MO Manual origin

/NL No listing

/NO No object code in memory or disk
/NS No symbol table in the listing

/SR Single record

/S8 Short screen listing

/WE Wait on assembly errors

/WS With symbols

You may use any combination of the switch options. Be
sure to include a blank space before the first switch. If
you omit filespec, you must use the in-memory switch
(/IM).

Examples:
A/IM/HE

assembles the source program in memory (/IM) and
stops at each error (/WE).

A TEST /LP

assembles the source program and saves it on disk as
TEST/BIN. The listing is printed on the printer (/LP).
Note that there must be a space between the filespec
and the switch.

A TEST/PRO

assembles the source program and saves it on disk as
TEST/PRO.

25

EDUASM

7 / ASSEMBLING THE PROGRAM

1200 7E
JMP

1203
FDB

00059

$1200

12@5 00960 BEGIN
START

o010 Q070
DONE-BEGIN

12e5(86 F9 0100 START

1215 27
BEQ
1217 OF

1219 BE
JMP

EQU

END

#$F9

2400 (00110>

#5400

80 90120 SCREEN
s K+

(111" 20130
#3500

F9 oa14@
SCREEN

9F AOOD 0150 WAIT
[$A0GD]

FA 0016@

WAIT

71 00170

$71

9F FFFE ao180
{$FFFE]

121D 09190 DONE
*

0000 00200

‘00000 TOTAL ERRORS}

BEGIN
DONE
SCREEN
START
WAIT

1200
121D

128A

1205
1211

. The location in memory where the assembled code

will be stored. In this example, the assembied code
for LDA#$F9 will be stored at hexadecimal location
#1200.

. The assembled code for the program line. $86F9 is

the assembled code for LDA #$F9.

. The program line.
. The number of errors. If you have errors, you will

want to assemble the program again with the /WE
switch.

. The symbols you used in your program and the

memory locations they refer to.

Figure 1. Assembly Display Listing

26

Controlling the
Assembly Listing

The assembler normally displays an assembly listing
similar to the one in Figure 1. You can alter this listing
with one of these switches:

/SS Short screen listing

/NS No symbol tabie in the listing
/NL No Tlisting

LP Listing printed on the printer
For example:

A SAMPLE /NS

assembles SAMPLE and shows a listing without the
symbol table.

If you are printing the listing on the printer, you might
want to set different parameters. You can do this with

T 64

the editor’s “set line printer parameters” command:
To use this command, type (at the * prompt):

S
The editor shows you the current values for:

® LINCNT — the number of lines printed on each page.
(“line count”)

® PAGLEN — the number of lines on a page. (“page
length”)

® PAGWID — the number of columns on a page. (“page
width”)

o FLDFLG — the “fold flag” (This flag should contain 1
if your printer does not “wrap around.” Otherwise, the
flag should contain 0.)

EDTASMOV PROGRAM

$36D6

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM

STARTS HERE

$3FFF (16K)
$7FFF (32K)

TOP OF RAM

It then prompts you for different values. Check your
printer manual for the appropriate parameters. If you
want the value to remain the same, simply press (ENTER).
For example:

LINCNT=58
PAGLEN=GG
PAGWID=80
FLDFLG=8

sets the number of lines to 58, the page length to 66,
and the page width to 80 columns. You can then assem-
ble the program with the /LP switch:

A SAMPLE /LP

and the assembler prints the listing on the line printer
using the parameters just set.

In-Memory Assembly
The /IM Switch

The /IM switch causes the program to be assembled in
memory, not on disk or tape. This is a good way to find
errors in a program.

Where in memory? This depends on whether you use
the /IM switch alone or accompany it with an ORG in-
struction, an /AO switch, or an /MO switch.

Using the /IM Switch Alone

This is the most efficient use of memory. The assembler
stores your program at the first available address after
the EDTASM (or EDTASMOV) program, the edit buffer,
and the symbol table:

EDTASM PROGRAM

$4A2E

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM

STARTS HERE

TOP OF RAM $7FFF (32K)

Figure 2. In-Memory Assembly

EUTASM

7 / ASSEMBLING THE PROGRAM

The EDTASM program ends at Address $4A2D. The
EDTASMOV program ends at $36D5.

The edit buffer contains the source program. It begins at
Address $4A2E or $36D6 and varies in size depending
on your program’s length.

The macro table references all the macro symbols in
your program and their corresponding values. (Macros
are described in Chapter 12.) its size varies depending
on how many macros your program contains.

The symbol table references all your program’s symbols
and their corresponding values. lts size varies depend-
ing on how many symbols your program contains.

Example:

Load the SAMPLE/ASM back into the edit buffer. At the *
prompt, type:
L SAMPLE/ASM
Delete the ORG line. At the * prompt, type:
DS
Then assemble the program in memory by typing:
A/IM

(If you want another look, type A/IM again. You can
pause the display by pressing (SHIFT and continue
by pressing any key.)

Since this sample program uses START to label the be-
ginning of the program, you can find its originating
address from the assembler listing. If you are using
EDTASM, it should begin at Address $4B1E. If you are
using EDTASMOV, it should begin at $37C6.

EDTASMOV PROGRAM

$36D6
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$3800

ASSEMBLED PROGRAM
STARTS HERE

$3FFF (16K)

TOP OF RAM $7FFF(32K)

Using ORG with /IM
for Origination Offset

If you have an ORG instruction in your program and do
not use the AO switch, the assembler stores your pro-
gram at:

the first available address + the value of ORG
Example:
Insert this line at the beginning of the sample program:
EDTASM Systems:

o5 ORG $G000
EDTASMOV Systems:
vese ORG $3800

Then, at the * prompt, type:

A/ 1M (ENTER

The START address is now the first available address +
$6000 or $3800. This means that if you have less than
32K (with EDTASM) or less than 16K (with EDTAS-
MOV), the program extends past the top of RAM and
you will get a BAD MEMORY error.

Using IM with /AO for Absolute Origin

The AO switch causes the assembler to store your pro-
gram “absolutely” at the address specified by ORG.

With the ORG instruction inserted, type (at the * prompt):
A/IM/AC (ENTER
Your program now starts at address $6000 or $3800:

EDTASM PROGRAM

$4A2E
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$6000

ASSEMBLED PROGRAM
STARTS HERE

TOP OF RAM $7FFF (32K)

Figure 3. /AO In-Memory Assembly.

28

As you can see, the AO switch set the location of the
assembled program only. It did not set the location of the
edit buffer or the symbol table.

If your ORG instruction does not allow enough memory
for your program, you will get a BAD MEMORY error.
The assembler cannot store your program beyond the
top of RAM.

Using /MO with /IM
for Manual Origin

The /MO switch causes your program to be assembled
at the address set by USRORG (plus the value set in
your ORG instruction, if you use one). To set USRORG,
use the editor's “origin” command.

Before setting USRORG, remove the ORG instruction
from your program. Then, at the * prompt, type:

0
The editor shows you the current values for:
® FIRST — the first hexadecimal address available

EDTASMOV PROGRAM

$36D6
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$3800

ASSEMBLED PROGRAM
STARTS HERE

$3FFF (16K)
TOP OF RAM $7FFF(32K)

® LAST — the last hexadecimal address available

® USRORG — the current hexadecimal value of
USRORG. (On startup, USRORG is
set to the top of RAM.)

It then prompts you for a new value for USRORG. If you
want USRORG to remain the same, press (ENTER).

If you want to enter a new value, it must be between the
FIRST address and LAST address. Otherwise, you will
get a BAD MEMORY error.

EDTASM Systems: Set USRORG to $6050:
USRORG=6050

EDTASMOV Systems: Set USRORG to $3800:
USRORG=380¢

After setting USRORG, you can assemble the program
at the USRORG address. Type:

A/IM/MO (ENTER

Your assembled program now starts at Address $6050
or $3800:

EDTASM PROGRAM

$4A2E
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$6050

ASSEMBLED PROGRAM
STARTS HERE

$7FFF (32K)

TOP OF RAM

Figure 4. /MO In-Memory Assembly.

29

7 / ASSEMBLING THE PROGRAM

Disk Assembly

When you specify a filespec in the assembler command,
the assembler saves the assembled program on disk.
You can then load the program from one of these
systems:

e DOS (to run as a stand-alone program)
e ZBUG (to debug with the stand-alone ZBUG program)
e BASIC (to call from a BASIC program)

The program originates at the address you specify in the
ORG instruction.

What address you should use as the originating address
depends upon which of the three systems you will be
loading it into.

Assembling for DOS

Reference J shows the memory map that is in effect
when DOS is loaded. As you can see, DOS consumes
all the memory up to Address $1200. This means you
must originate the program after $1200 or you will over-
write DOS.

In the sample program, reinsert the ORG $1200
instruction:

S0 ORG $1200
and assemble it to disk by typing:
A SAMPLE /SR (ENTER

Note the /SR switch. You must use /SR when assem-
bling to disk a program that you plan to load back into
DOS. This puts the program in the format expected by
DOS.

The assembler saves SAMPLE/BIN to disk with a start-
ing address of $1200. You can now load and execute
SAMPLE/BIN from the DOS menu.

Assembling for Stand-Alone
ZBUG (EDTASMOYV Users)

If you plan to use the stand-alone ZBUG for debugging

your program, you need to save the program on disk so
that you can load it into ZBUG.

Reference J also shows the memory map that is in effect
when ZBUG is loaded. As you can see, you must use an
originating address of at least $3800 or you will overwrite
ZBUG. Change the ORG instruction to:

50 ORG $380¢

So that you can test this from ZBUG, without the pro-
gram returning to BASIC, you need to change the ending
of it. First, delete the CLR instruction in Line 170:

D170
Then, change the JMP instruction in Line 180 to this:
180 SWI

After making the changes to the program, assemble it to
disk by typing:

A SAMPLE/BUG /WS (ENTER

The assembler saves SAMPLE/BUG on disk with a start-
ing address of $3800. The /WS switch causes the
assembler to save the symbol table also.

Hints On Assembly
e Use a symbol to label the beginning of your program.

® When doing an in-memory assembly on a program
with an ORG instruction, you may want to use the /AO
switch. Otherwise, the assembler will not use ORG as
the program’s originating address. It will use it to
offset (add- to) the loading address.

e The /WE switch is an excellent debugging tool. Use it
to detect assembly errors before debugging the
program.

o If you would like to examine the edit buffer and symbol
table after an in-memory assembly, use ZBUG to ex-
amine the appropriate memory locations.

30

Chapter 8/ Debugg

ing the Program

(ZBUG Commands — Part Il)

ZBUG has some powerful tools for a trial run of your
assembled program. You can use them to look at each
register, every flag, and every memory address during
every step of running the program.

Before reading any further, you might want to review the
ZBUG commands you learned in Chapter 5. We will be
using these commands here.

Preparing the
Program for ZBUG

In this chapter, we’ll use the sample program from
Chapter 2 to show how to test a program. How you load
the program into ZBUG depends on whether you are us-
ing EDTASM’s ZBUG program or the stand-alone ZBUG
program.

EDTASM ZBUG:

If you are using EDTASM, you can use EDTASM'’s
ZBUG program.

1. Load SAMPLE/ASM into EDTASM (if it's not already
loaded).

2. So that your program will be in the same area of
memory as ours, change the ORG instruction to:

50 ORG $5800

3. So that you can test the program properly from
ZBUG (without the program returning to BASIC),
you need to change the program’s ending. First, de-
lete the CLR instruction in Line 170:

D170 ENTER

Then, change the JMP instruction in Line 180 to
this:

180 SWI

4. Assemble the program in memory using the /IM and
/AQ switches. At the = prompt, type:

A/IM/AD
5. Enter ZBUG. At the * prompt, type:
i

When the # prompt appears, you're in ZBUG and-
can test the sample program.

Stand-Alone ZBUG:

If you are using EDTASMOV, you should use the Stand-
Alone ZBUG.

1. Assemble SAMPLE/BUG to disk as instructed in the
last chapter (“Assembling for Stand-Alone ZBUG”).

2. Return to DOS and execute the stand-alone ZBUG
program:

EXECUTE A PROGRAM
PROGRAM NAME L[ZBUG 1/BIN

ZBUG loads and displays its # prompt.

3. Load SAMPLE/BUG, along with its symbol table,
into ZBUG. Type:

LDS SAMPLE/BUG (ENTER

When the # prompt appears, you're ready to test the
sample program with ZBUG.

Display Modes

In Chapter 5, we discussed four examination modes.
ZBUG also has three display modes.

We’'ll examine each of these display modes from the
mnemonic examination mode. If you're not in this mode,
type M to get into it.

31

EDuASM

8 / DEBUGGING THE PROGRAM

Numeric Mode
Type:
N

and examine the memory addresses that contain your
program: $5800-$5817 for EDTASM’s ZBUG or $3800-
$3817 for Stand-Alone ZBUG.

In the humeric mode, you do not see any of the symbols
in your program (BEGIN, START, SCREEN, WAIT, and
DONE). All you see are numbers. For example, with
EDTASM's.ZBUG, Address $580F shows the instruction
BNE 580A rather than BNE SCREEN.

Symbolic Mode
From the command level, type:
S

and examine your program again. ZBUG displays your
entire program in terms of its symbols (BEGIN, START,
SCREEN, WAIT, and DONE). Examine the memory
address containing the BNE SCREEN instruction and

type:

3
The semicolon causes ZBUG to display the operand
(SCREEN) as a number (580A or 380A).

Half-Symbolic Mode
From the command level, type:
H

and examine the program. Now all the memory addres-
ses (on the left) are shown as symbols, but the operands
(on the right) are shown as numbers.

Using Symbols to
Examine Memory

Since ZBUG understands symbols, you can use them in
your commands. For example, with EDTASM’s ZBUG,
both these commands open the same memory address
no matter which display mode you are in:

BEGIN/
sgee/

Both of these commands get ZBUG to display your en-
tire program:

T BEGIN DONE
T 5808 5817

You can print this same listing on your printer by substi-
tuting TH for T.

Executing the Program

You can run your program from ZBUG using the G (Go)
command followed by the program'’s start address:

EDTASM ZBUG: Type either of the following:

GBEGIN
G5800 (ENTER

Stand-Alone ZBUG: Type either of the following:

GBEGIN (ENTER
G380¢ (ENTER

The program executes, filling all of your screen with a
pattern made up of F9 graphics characters. If you don'’t
get this pattern, the program probably has a “bug.” The
rest of the chapter discusses program bugs.

After executing the program, ZBUG displays 8 BRK @
5817, 8 BRK @ 3817, or 8 BRK @ DONE. This tells you
the program stopped executing at the SWI instruction lo-
cated at Address DONE. ZBUG interprets your closing
SWI instruction as the eighth or final “breakpoint” (dis-
cussed. below).

Setting Breakpoints

If your program doesn’t work properly, you might find it
easier to debug it if you break it up into small units and
run each unit separately. From the command level, type
X followed by the address where you want execution to
break.

We'll set a breakpoint at the first address that contains
the symbol SCREEN: $580A for EDTASM’'s ZBUG or
380A for Stand-Alone ZBUG.

EDTASM ZBUG: Type either of the following:

KSCREEN (ENTER
X580A (ENTER

32

Stand-Alone ZBUG: Type either of the following:

XSCREEN
X380A (ENTER

Now type GBEGIN to execute the program. Each
time execution breaks, type:

C (ENTER)

to continue. A graphics character appears on the screen
each time ZBUG executes the SCREEN loop. (The char-
acters appear to be in different positions because of
scrolling.You will not see the first 32 characters because
they scroll off the screen.)

Type:
D

to display all the breakpoints you have set. (You may set
up to eight breakpoints numbered 0 through 7.)

Type:
Cio (ENTER

and the tenth time ZBUG encounters that breakpoint, it
halts execution.

Type:
Y

This is the command to “yank” (delete) all breakpoints.
You can also delete a specific breakpoint. For example:

Y@ (ENTER
This deletes the first breakpoint (Breakpoint 0).

You may not set a breakpoint in a ROM routine. If you
set a breakpoint at the point where you are calling a
ROM routine, the C command will not let you continue.

Examining Registers
and Flags

Type:
R

What you see are the contents of every register during
this stage of program execution. (See Chapter 10 for
definition of all the 6809 registers and flags.)

Look at Register CC (the Condition Code). Notice the
letters to the right of it. These are the flags that are set in
Register CC. The E, for example, means the E flag is
set.

Type:
X/

and ZBUG displays only the contents of Register X. You
can change this in the same way you change the con-
tents of memory. Type:

? (ENTER

and the Register X now contains a zero.

Stepping Through
the Program

Type:
BEGIN Note the comma!

LDA #%F9 is the next instruction to be executed. The
first instruction, JMP START, has just been executed. To
see the next instruction, type:

’ Simply a comma

Now, LDA #8F9 has been executed and LDX #$500 is
the next. Type:

R (ENTER

and you'll see this instruction has loaded Register A with
$Fo.

Use the comma and R command to continue single-
stepping through the program examining the registers at
will. If you manage to reach the JSR [$A000] instruction,
ZBUG prints:

CAN‘T CONTINUE

ZBUG cannot single-step through a ROM routine or
through some of the DOS routines.

Transferring a Block
of Memory
EDTASM ZBUG: Type:
U 5800 5000 G (ENTER
Stand-Alone ZBUG: Type:
U 3809 3850 6

Now the first six bytes of your program have been
copied to memory addresses beginning at 5000 or 3850.

8 / DEBUGGING THE PROGRAM

Saving Memory to Disk

To save a block of memory from ZBUG, including the
symbol table, type:

EDTASM ZBUG:
5817 5800

Stand-Alone ZBUG: PS5 TEST/BUGC 380¢
3817 3800 ENTER

This saves your program on disk, beginning at Address
5800 (or 3800) and ending at Address 5817 (or 3817).
The last address is where your program begins execu-
tion when you load it back into memory. In this case, this

PS TEST/BUG 58090

address is the same as the start address.

To load TEST/BUG and its symbol table back into
ZBUG, type:

LDS TEST/BUG (ENTER
Hints on Debugging

e Don't expect your first program to work the first time.
Have patience. Most new programs have bugs. De-
bugging is a fact of life for all programmers, not just
beginners.

e Be sure to make a copy of what you have in the edit
buffer before executing the program. The edit buffer is
not protected from machine language programs.

34

Chapter 9/ Using the ZBUG Calculator
(ZBUG Commands — Part lil)

ZBUG has a built-in calculator that performs arithmetic,
relational, and logical operations. Also, it lets you use
three different numbering systems, ASCII characters,
and symbols.

This chapter contains many examples of how to use the
calculator. Some of these examples use the same
assembled program that we used in the last chapter.

Stand-Alone ZBUG: Some of the memory
addresses we use in the examples are too high for
your system. Subtract $1000 from all the hexadeci-
mal addresses and 4096 from all the decimal
numbers.

Numbering System Modes

ZBUG recognizes numbers in three numbering systems:
hexadecimal (Base 16), decimal (Base 10), and octal
(Base 8).

Output Mode

The output mode determines which numbering system
ZBUG uses to output (display) numbers. From the ZBUG
command level, type:

019 (ENTER

Examine memory. The T at the end of each number
stands for Base 10. Type:

08 (ENTER

Examine memory. The Q at the end of each number
stands for Base 8. Type:

016
You're now back in Base 16, the default output mode.

Input Mode

You can change input modes in the same way you
change output modes. For example, type:

110

Now, ZBUG interprets any number you input as a Base
10 number. For exampie, if you are in this mode and

type:

T 49152 49162
ZSBUG shows you memory addresses 49152 (Base 10)
through 49162 (Base 10). Note that what is printed on

the screen is determined by the output mode, not the
input mode.

You can use these special characters to “override” your
input mode:

Table 1. Special Input Mode Characters

For example, while still in the 110 mode, type:
T 49152 $Co10

The “$” overrides the 110 mode. ZBUG, therefore, inter-
prets C010 as a hexadecimal number. As another exam-
ple, get into the 116 mode and type:

T 491527 C01¢ (ENTER

Here, the “T” overrides the 116 mode. ZBUG interprets
49152 as decimal.

35

_EdNASM

9 / USING THE ZBUG CALCULATOR

Operations

ZBUG performs many kinds of operations for you. For
example, type:

CoQa+25T/

and ZBUG goes to memory address C019 (Base 16),
-the sum of C000 (Base 16) and 25 (Base 10). If you
simply want ZBUG to print the results of this calculation,

type:
COQQ+25T=

On the following pages, we'll use the terms “operands,”
“operators,” and “operation.” An operation is any cal-
culation you want ZBUG to solve. In this operation:

1+2=
1" and “2” are the operands. " +" is the operator.

Operands

You may use any of these as operands:.
1. ASCII characters

2. Symbols

3. Numbers (in either Base 8, 10, or 16) — Please note
that ZBUG recognizes integers (whole numbers) only

Examples (Get into the 016 mode):
? A -

prints 41, the ASCII hexadecimal code for “A”.
START=

prints the START address of the sample program. (it will
print UNDEFINDED SYMBOL if you don't have the sam-
ple program assembled in memory.)

150=
prints the hexadecimal equivalent of octal 15.
If you want your results printed in a different numbering

system, use a different output mode. For example, get
into the O10 mode and try the above examples again.

Operators

You may use arithmetic, relational, or logical operators.
(Get into the 016 mode for the following examples.)

Arithmetic Operators

Addition +
Subtraction -
Multiplication
Division .DIV.
Modulus .MOD.
Positive +
Negative -

*

Examples:
DONE-START=

prints the length of the sample program (not including
the SWI at the end).

9,0IV.2=

prints 4. (ZBUG can divide integers only.)
9.,M0OD.2=

prints 1, the remainder of 9 divided by 2.
1-2=

prints OFFFF,65535T, or 177777Q, depending on which
output mode you are in. ZBUG does not use negative
numbers. Instead, it uses a “number circle” which oper-
ates on modulus 10000 (hexadecimal):

(0]

FFFF 1

FFFD

I minus 1

equals 2
FFFF 1

Figure 5. Number Circle lllustration of Memory.

_EdTASM

To understand this number circle, you can use the clock
as an analogy. A clock operates on modulus 12 in the
same way the ZBUG operates on modulus 10000.
Therefore, on a clock, 1:00 minus 2 equals 11:00:

0

11:00 1:00

9:00 3:00

I minus t

equals o

11:00 1:00

Figure 6. Number Circle Illustration of Clock.

Relational Operators

Equal to
Not Equal to

+EQU.,
+NEQ,

These operators determine whether a relationship is true
or false.

Examples:
S.EQU.S=

prints OFFFF, since the relationship is true. (ZBUG prints
65535T in the O10 mode or 177777Q in the O8 mode.)

S+NEQ.S=

prints 0, since the relationship is false.

Logical Operators

Shift <
LogicalAND +AND .,
InclusiveOR +OR.
ExclusiveOR +XOR
Complement +NOT,

Logical operators perform bit manipulation on bi-
nary numbers. To understand bit manipulation, see the

6809 assembly language book we referred to in the
introduction.

Examples:
10{2=

shifts 10 two bits to the left to equal 40. The 6809 SL
instruction also performs this operation.

10{-2=

shifts 10 two bits to the right to equal 4. The 6809 ASR
instruction also performs this operation.

B.XOR.,5=

prints 3, the exclusive or of 6 and 5. The 6809 EOR
instruction also performs this operation.

Complex Operations

ZBUG calculates complex operations in this order:

+ +DIV, +MOD., <
+AND .,
+OR, + XOR
+ -
+EQU. +NEQ,

You may use parentheses to change this order.

Examples:
4+4,D1IV.2=

The division is performed first.
(4+4).DIV.2=

The addition is performed first.
4#4,DIV.4=

The muitiplication is performed first.

37

SECTION Il

ASSEMBLY
LANGUAGE

SECTION Il

ASSEMBLY LANGUAGE

This section gives details on the Disk
EDTASM assembly language. It does not ex-
plain the 6809 mnemonics, however, since
there are many books available on the 6809.

To learn about 6809 mnemonics, read one
of the books listed in “About This Manual.” If
you need more technical information on the
6809, read:

MC6809-MC6809E

8-Bit Microprocessor Programming

Manual

Motorola, Inc.

39

Chapter 10/
Writing the Program

Chapter 3 gives a general description of assembly lan-
guage instructions. This chapter describes them in
detail.

The 6809 Registers

The 6809 contains nine temporary storage areas that
you may use in your program:

REGISTER | SIZE | DESCRIPTION

A 1 byte Accumulator
B 1 byte Accumulator
D 2 bytes Accumulator
(a combination
of A and B)
DP 1 byte Direct Page
CcC 1 byte Condition Code
PC 2 bytes Program Counter
X 2 bytes Index
Y 2 bytes Index
U 2 bytes Stack Pointer
S 2 bytes Stack Pointer

Table 2. 6809 Registers

Registers A and B can manipulate data and perform
arithmetic calculations. They each hold one byte of data.
If you like, you can address them as D, a single 2-byte
register.

Register DP is for direct addressing. It stores the most
significant byte of an address. This lets the processor
directly access an address with the single, least signifi-
cant byte.

Registers X and Y can each hold two bytes of data.
They are mainly for indexed addressing.

Register PC stores the address of the next instruction to
be executed.

Registers U and S each hold a 2-byte address that
points to an entire “stack” of memory. This address is
the top of the stack + 1. For example, if Register U
contains 0155, the stack begins with Address 154 and
continues downwards.

The processor automatically points Register S to a stack
of memory during subroutine calls and interrupts. Regis-
ter U is solely for your own use. You can access either
stack with the PSH and PUL mnemonics or with indexed
addressing.

Register CC is for testing conditions and setting inter-
rupts. It consists of eight “flags.” Many mnemonics “set”
or “clear” one or more of these flags. Others test to see
if a certain flag is set or clear.

This is the meaning of each flag, if set:

C (Carry), Bit 0 — an 8-bit arithmetic operation
caused a carry or borrow from the most significant
bit.

V (Overflow), Bit 1 — an arithmetic operation
caused a signed overflow.

Z (Zero), Bit 2 — the result of the previous opera-
tion is zero.

N (Negative), Bit 3 — the result of the previous
operation is a negative number.

| (Interrupt Request Mask), Bit 4 — any requests
for interrupts are disabled.

H (Half Carry), Bit 5 — an 8-bit addition operation
caused a carry from Bit 3.

F (Fast Interrupt Request Mask), Bit 6 — any re-
quests for fast interrupts are disabled.

E (Entire Flag), Bit 7 — all the registers were
stacked during the last interrupt stacking operation.
(If not set, only Registers PC and CC were stacked.)

41

EDUASM

10 / WRITING THE PROGRAM

Assembly Language Fields

You may use four fields in an assembly language in-
struction: label, command, operand, comment. In this
instruction:

START LDA #$F9 GETS CHAR

START is the label. LDA is the command. #$F9+1 is
the operand. GETS CHAR is the comment.

The comment is solely for your convenience. The
assembler ignores it.

The Label

You can use a symbol in the label field to define a mem-
ory address or data. The above instruction uses START
to define its memory address.

Once the address is defined, you can use START as an
operand in other instructions. For example:

BNE START
branches to the memory address defined by START.

The assembler stores all the symbols, with the addres-
ses or data they define, in a “symbol tabie,” rather than
as part of the “executable program.” The symbol can be
up to six characters.

The Command
The command can be either a pseudo op or a mnemonic.

Pseudo ops are commands to the assembler. The
assembler does not translate them into opcodes and
does not store them with the executable program. For
example:

NAME EQU $43

defines the symbol NAME as $43. The assembler stores
this in its symbol table.

ORG $3000

tells the assembler to begin the executable program at
Address $3000.

SYMBOL FCB $6

stores 6 in the current memory address and labels this
address SYMBOL. The assembler stores this informa-
tion in its symbol table.

Mnemonics are commands to the processor. The

assembler translates them into opcodes and stores them
with the executable program. For example:

CLRA

tells the processor to clear Register A. The assembler
assembles this into opcode number $4F and stores it
with the executable program.

The next chapter shows how to use pseudo ops. Refer-
ence L lists the 6809 mnemonics.

The Operand

The operand is either a memory address or data. For
example:

LDD #3000+COUNT

loads Register D with $3000 plus the value of COUNT.
The operand, #$3000 + COUNT, specifies a data
constant.

The assembler stores the operand with its opcode. Both
are stored with the executable program.

Operators

The plus sign (+) in the above operand (#3000 +
COUNT) is called an operator.

You can use any of the operators described in Chapter
9, “Using the ZBUG Calculator,” as part of the operand.

Addressing Modes

The above example uses the # sign to tell the assem-
bler and the processor that $3000 is data. When you
omit the # sign, they interpret $3000 in a different
“addressing mode.”

Example:
LDD $3000

tells the assembler and processor that $3000 is an
address. The processor loads D with the data contained
in Address $3000 and $3001.

Each of the 6809 mnemonics lets you use one to six
addressing modes. These addressing modes tell you:

® |f the processor requires an operand to execute
the opcode

o How the assembler and processor will interpret
the operand

42

1. Inherent Addressing

There is no operand, since the instruction doesn’t re-
quire one. For example:

SWI
interrupts software. No operand is required.
CLRA

clears Register A. Again, no operand is required. Regis-
ter A is part of the instruction.

2. Immediate Addressing

The operand is data. You must use the # sign to specify
this mode. For example:

ADDA #$30
adds the value $30 to the contents of Register A.
DATA EQU 8004
LDX #DATA
loads the value $8004 into Register X.
CMPX #$1234

compares the contents of Register X with the value
1234.

3. Extended Addressing

The operand is an address. This is the default mode of
all operands.

(Exception: If the first byte of the operand is identical to
the direct page, which is 00 on startup, it is directly
addressed. This is an automatic function of the assem-
bler and the processor. You need not be concerned with
it if you're a beginner.)

For example:
JEBR #$1234
jumps to Address $1234.
SPOT EQU %1234
5TA SPOT

stores the contents of Register A in Address $1234.

if the instruction calls for data, the operand contains the
address where the data is stored.

LDA $1234

does not load Register A with $1234. The processor
loads A with whatever data is in Address $1234. if $06 is

stored in Address $1234, Register A is loaded with $06.

ADDA $1234

adds whatever data is stored in Address $1234 to the
contents of Register A.

LDD $1234

loads D, a 2-byte register, with the data stored in mem-
ory addresses $1234 and $1235.

You can use the > sign, which is the sign for extended
addressing, to force this mode. (See “Direct Addressing.”)

Extended Indirect Addressing.

The operand is the address of an address. This is a
variation of the extended addressing mode. The []
signs specify it. (Use (D to produce the [sign
and (SHIFD (=) to produce the] sign.)

In understanding this mode, think of a treasure hunt
game. The first instruction is “Look in the clock.” The
clock contains the second instruction, “Look in the
refrigerator.”

Examples:
JSR [$1234]

jumps to the address contained in Addresses $1234 and
$1235. If $1234 contains $06 and $1235 contains $11,
the effective address is $0611. The program jumps to
$0611.

SPOT EQU $1234

5TA (SPOTI

stores the contents of Register A in the address con-
tained in Addresses $1234 and $1235.

LDD [$12341

loads D with the data stored in the address that is stored
in Addresses $1234 and $1235.

This is a good mode of addressing to use when calling
ROM routines. For example, the entry address of the
POLCAT routine is contained in Address $A000. There-
fore, you can call it with these instructions:

POLCAT EQU $A000
JSR LPOLCATI

If a new version of ROM puts the entry point in a differ-
ent address, your program still works without changes.

4. Indexed Addressing
The operand is an index register which points to an

43

_EDTASM

10 / WRITING THE PROGRAM

address. The index register can be any of the 2-byte
registers, including PC. You can augment it with:

® A constant or register offset
® An auto-increment or auto-decrement of 1 or 2
The comma (,) indicates indexed addressing.
As an example, load X, a 2-byte register, with $1234:
LDX #$1234

You can now access Address $1234 through indexed
addressing. This instruction:

STA 1 K
stores the contents of A in Address $1234
STA 3%

stores the contents of A in Address $1237, which is
$1234 + 3. (The number 3 is a constant offset.)

SYMBOL EQU $4
STA SYMBOL s X

stores the contents of A in Address $1238, which is
$1234 + SYMBOL. (SYMBOL is a constant offset.)

LDB #45
S5TA B X

stores the contents of A in Address $1239 which is
$1234 + the contents of B. (B is a register offset. You
can use either of the accumulator registers as a register
offset.)

STA 1 X+

This instruction does two tasks: (1) stores A’s contents in
Address $1234 (the contents of X) and then (2) incre-
ments X's contents by one, so that X contains $1235.

5TA

(1) stores A’s contents in Address $1235 (the current
contents of X) and then (2) increments X's contents by
two to equal $1237.

STA y ==X

(1) decrements the current contents of X by two to equal
$1235 ($1237 — 2) and then (2) stores A’s contents in
Address $1235.

As we said above, you can use PC as an index register.
In this form of addressing, called program counter rela-
tive, the offset is interpreted differently. For example:

SYmBOL FCB 0
LDA SYMBOL »PCR

s+

While assembling the program, the assembler subtracts
the contents of Register PC from the offset:

LDA SYMBOL-PC»PCR

While running the program, the processor adds the con-
tents of Register PC to the offset. This causes A to be
loaded with SYMBOL.

This seems to be the same as extended addressing.
But, by using program counter relative adressing, you
can relocate the program without having to reassemble
it.

Indexed Indirect Addressing.

The operand is an index register which points to the
address of an address. This is a variation of indexed
addressing.

For example, assume that :
® Register X contains $1234
e Address $1234 contains $11
® Address $1235 contains $23
® Address $1123 contains $64
This instruction:
LDA

loads A with 64. (Register X points to the addresses of
the address. This address is storing 6, the required
data.)

L+X3]

85TA LK1

stores the contents of A in Address $1123. (Register X
points to the addresses, $1234 and $1235, of the effec-
tive address, $1123.)

5. Relative Addressing

The assembler interprets the operand as a relative
address. There is no sign to indicate this mode. The
assembler automatically uses it for all branching
instructions.

For example, if this instruction is located at Address
$0580:

BRA $0585

The assembler converts $0585 to a relative branch of
+3 (0585-0582).

This mode is invisible to you unless you get a BYTE
OVERFLOW error, which we discuss below. Because
the processor uses this mode, you can relocate your

44

program in memory without changing any of the branch-
ing instructions.

The BYTE OVERFLOW error means that the relative
branch is outside the range of —128 to + 127. You must
use a long branching instruction instead. For example:

LBRA 0600
allows a relative branching range of —-32768 to + 32767.

6. Direct Addressing

In this mode, the operand is half of an address. The
other half of the address is in Register DP:

DP REGISTER OPERAND
ADDRESS | = |(most significant|(least significant
byte) byte)

Figure 7. Direct Addressing

The assembler and the processor use this mode auto-
matically whenever they approach an operand whose
first byte is what they assume to be a “direct page” (the
contents of Register DP). Until you change the direct
page, the assembler and the processor assume it is 00.

For example, both of these instructions:

JSR Q@15
JER %105

cause a jump to Address $0015. In both cases, the
assembler uses only 15 as the operand, not 00. When
the processor executes them, it gets the 00 portion from
Register DP and combines it with $15. (On startup, DP
contains 0, as do all the other registers.)

Because of direct addressing, all operands beginning
with 00, the direct page, consume less room in memory

and run quicker. If most of your operands begin with
$12, you might want to make $12 the direct page.

To do this, you first need to tell the assembler what you
are doing, by putting a SETDP pseudo-operation in your
program:

SETDP $12

This tells the assembler to drop the $12 from all oper-
ands that begin with $12. That is, the assembler assem-
bles the operand “1234" as simply “34".

Then, you must load Register DP with $12. Since you
can use LD only with the accumulator registers, you
have to load DP in a round-about manner:

LDB #%12
TFR B.,DP

Now the direct page is $12, rather than 00. The proces-
sor executes all operands that begin with $12 (rather
than 00) in an efficient, direct manner.

The assembler uses direct addressing on all operands
whose first byte is the same as the direct page. You can
denote direct addressing with the < sign if you want to
document or be sure that direct addressing is being
used.

For exampile, if the direct page is $12:
JER <$15

jumps to Address $1215. This instruction documents that
the processor uses direct addressing.

Similarly, you might want to use the > sign to force ex-
tended addressing. For example:

JER *61215

jumps to Address $1215. The assembler and processor
use both bytes of the operand.

To learn more about 6809 addressing modes, read one
of the books listed at the beginning of this manual.

45

Chapter 11/
Using Pseudo Ops

As discussed earlier, pseudo ops direct the assembler.
You can use them to:

Control where the program is assembled
@ Define symbols

® [nsert data into the program

® Change the assembly listing

® Do a “conditional” assembly

Include another source file in your program

Pseudo ops are unigue to the assembler you are using.
Other 6809 assemblers may not recognize the Disk
EDTASM pseudo ops.

The Disk EDTASM pseudo ops make it easier for you to
program. This chapter shows how to use pseudo ops.

Controlling Where the
Program is Assembled

The Disk EDTASM has two pseudo ops that control
where the program is assembled:

® ORG, sets the first location
¢ END, ends the assembly

ORG

ORG expression

Tells the assembler to begin assembling the program at
expression. Example:

ORG 1800

tells the assembler to start assembling the program at
Address $1800.

You can put more than one ORG command in a pro-

gram. When the assembler arrives at the new ORG, it
begins assembling at the new expression.

END

END expression

Tells the assembler to quit assembling the program. The
expression option lets you store the program’s start
address. Use END as the last instruction in all your
assembly language programs.

Example:
ORG $18¢0
DATA FCC ‘This is some data’

START LDA DATA

END START

The END pseudo op quits the assembly and stores the
program’s entry address (the value of START) on disk.
When you load the program, the processor knows to
start executing at START (the LDA instruction) rather
than at DATA (the FCC instruction).

FCC is a pseudo op explained later in this chapter.

Defining Symbols

Symbols make it easy to write a program and also make
the program easy to read and revise. The Disk EDTASM
has two pseudo ops for defining symbols:

¢ EQU, for defining a constant value
o SET, for defining a variable value

11 / USING PSEUDO OPS

EQU

symbol EQU expression
Equates symbol to expression. Examples:

CHAR EQU F9
equates CHAR to $F9.
SCREEN EQU $500
LDX #5CREEN

equates SCREEN to $500. The next instruction loads X
with $500.

EQU helps set the values of constants. You can use it
anywhere in your program.

SET

symbol SET expression

Sets symbol equal to expression. You can use SET to
reset the symbol elsewhere in the program. Example:

SYMBOL SET 23

sets SYMBOL equal to 25. Later in the program, you can
reset SYMBOL.

SYMBOL SET
now SYMBOL equals 25+ COUNT.

SYMBOL+COUNT

Inserting Data into
Your Program

The Disk EDTASM has four pseudo ops that make it
simple for you to reserve memory and insert data in your
program:

® RMB, for reserving areas of memory for data
e FCB, for inserting one byte of data in memory
e FDB, for inserting two bytes of data in memory
® FCC, for inserting a string of data in memory

Remember that the processor cannot “execute” a block
of data in your program. If you use these pseudo ops:

e Use them at the end of your program (just before the
END instruction), or

® Precede them with an instruction that jumps or
branches to the next “executable” instruction.

RMB

symbol RMB expression

Reserves expression bytes of memory for data.
Example:

BUFFER RMB 296

reserves 256 bytes for data, starting at Address
BUFFER.

DATA RMB 6+5YMBOL

reserves 6+ SYMBOL bytes for data beginning at
Address DATA.

FCB

symbol FCB expression

Stores a 1-byte expression in memory at the current
address. The symbol is optional.

Examples:
DATA FCB $33
stores $33 in Address DATA.
FACTOR FCB NUM/2
LDA FACTOR

stores NUM/2 in Address FACTOR, then, loads NUM/2
into Register A.

FDB

symbol FDB expression

Stores a 2-byte expression in memory starting at the
current address. The symbol is optional. Example:

DATA FDB $3322
stores $3322 in Address DATA and DATA + 1.

FCC

symbol FCC delimiter string delimiter

Stores an ASCII string in memory, beginning at the cur-
rent address. The symbol is optional. The delimiter can
be any character.

Examples:
TABLE FCC /THIS I8 A STRING/

stores the ASCII codes for THIS IS A STRING in mem-
ory locations, beginning with TABLE.

48

EDTASM

NAME FCC ‘Drlan’
FCB $0D
LDB #NAME
INIT LDA NAME
INCB
CMPA NAME
BNE INIT

The first instruction stores “Dylan” in the five memory
addresses beginning with NAME. The next instructions
process this data.

Changing the
Assembly Listing

You can use three pseudo ops to change the listing the
assembler prints for you:

e TITLE, inserts a title at the top of each listing page
® PAGE, ejects the listing to the next page

e OPT, turns on or off the switches that determine how
the assembler lists “macros” (Macros are discussed
in the next chapter.)

TITLE string

Tells the assembler to print the first 32 characters of the
string at the top of each assembly listing page. Example:

TITLE

causes the assembler to print Budget Program as the
title of each page in the assembly listing.

PAGE

Starts a new page if the assembly listing is being printed
on the line printer. Example:

PAGE
tells the assembler to eject the listing to the next page.

Buddet Prodram

OPT
OPT switch, switch, ...

Causes the assembler to use the specified switches
when printing its listing. You can specify these switches
with OPT:

MC List macro calls (default)
NOMC Do not list macro calls

MD List macro definitions (default)
NOMD Do not list macro definitions
MEX List macro expansions
NOMEX Do not list macro expansions (defaulit)
L Turn on the listing (default)
NOL Turn off the listing
Example:
oPT MEX

Causes the assembler to list the macro expansions in its
listing. (Macros are discussed in the next chapter.)

Conditional Assembly

You may want to execute a certain section of your pro-
gram only if a certain condition is true. The Disk
EDTASM lets you set up a “conditional” section of your
program, using these two pseudo ops:

COND

COND condition expression

Assembles the following instructions only if the expres-
sion is true (non-zero). If not true (zero), the assembler
goes to the instruction that immediately follows the
ENDC instruction.

Only these operators are recognized in a condition ex-
pression: +,-,/,". See ENDC below for an example.

ENDC
ENDC

Ends a conditional assembly, initiated by COND.
Examples:
COND SYMBOL

ENDC
assembles the lines between COND SYMBOL and
ENDC only if SYMBOL is not equal to zero.

COND VALUEZ-VALUEL

ENDC
assembles the lines between VALUE2-VALUE1 only if

VALUE2-VALUE1 are not equal (which causes the resuit
to be a non-zero value).

11 / USING PSEUDO OPS

Including Other
Source Files

To let you load another source file and include it in your
program, the Disk EDTASM offers an INCLUDE pseudo
op.

INCLUDE

INCLUDE filespec

Inserts filespec, a file of source assembly language in-
structions, at the point where INCLUDE appears in the

program. The assembler assembles the entire included
file before assembling the next instruction.

Example:
INCLUDE ROUTINE/SRC

inserts and assembles ROUTINE/SRC, a source file, be-
fore assembling the next instruction.

INCLUDE SuB1/SRC
INCLUDE SUBZ/SRC

inserts and assembles SUB1, then inserts and assem-
bles SUB2, then proceeds with the next instruction.

50

:

Chapter 12/
Using Macros

A macro is like a subroutine. It lets you call an entire
group of instructions with a single program line. This
helps when you want to use the same group of instruc-
tions many times in the program.

This chapter first tells how to use a macro. It then gives
guidelines on the format of a macro.

How to Use a Macro

To use a macro, you must first define it. For example,
you could define the entire sample program (from Chap-
ter 2) as a macro named GRAPH.

After defining the macro, you can use its name the same
way you use a mnemonic. Whenever the assembler en-
counters the macro’s name, it expands it into the defined
instructions.

Defining a Macro
To define a macro, you need to:

e Use MACRO (a pseudo op) to begin the macro defini-
tion and assign it a name.

® Use source instructions to define the macro.
e Use ENDM (a pseudo op) to end the macro definition.

This is an exampie of the sample program converted into
a macro definition:

20030 GRAPH MACRO

o0100 LDA #4F9
o110 LDX #6400
00120 \N.A STA s X+
00130 CMPX #4500
ool140 BNE \+A
20150 \.B JER [$AB0O]
00160 BEQ \+B
20180 ENDM

Line 30 names the macro as GRAPH, lines 50-160 de-
fine the macro, and line 180 ends the macro definition.

Notice the names of the symbols within the macro def-
inition: \.A and \.B. If you do not use this format for
naming symbols, you'll get a MULTIPLY DEFINED SYM-
BOL error when you call the macro more than once.
(More on this later.)

Insert the above program using SHIFT) to gener-
ate the backslash character (\). Save the program on
disk as MACRO1 and then delete it.

WD MACRO1 (ENTER
D#s#

Calling a Macro

To call a macro, simply use the macro name as if it were
a mnemonic. For example, this sample program calls
GRAPH and then ends:

o110 ORG $1200
po129¢ BEGIN JMP START
00130 FDB DONE-BEGIN
2140 START *

2150 INCLUDE MACRO1/ASM
po160 GRAPH

o170 CLR $71

po180 JMP [$FFFE]
20198 DONE *

o200 END

Line 150 loads MACRON1, the file containing the defini-
tion of GRAPH, and includes it in the source program.
Line 160 calls the GRAPH macro.

To see how the assembler expands the GRAPHIC mac-
ro, insert this line:

pB135 OPT MEX

and assemble the program. The assembier listing shows
how the assembler expands GRAPH into its defined in-
structions.

M

51

12 / USING MACROS

Note that the assembler has replaced \.A with AOO00
and \.B with B0O00O. The zeroes indicate that this is the
first expansion of the symbols in GRAPH. (In this case,
this is the only expansion.)

Passing Values to a Macro

A convenient way to use a macro is to pass values to it.
You can use a macro many times in your program, pas-
sing different values to it each time.

This is a definition of the GRAPH macro, slightly mod-
ified so that you can pass two values to it. Insert this
program, save it as MACRO2 and then delete it.

00230 GRAPHZ MACROD

po100 LDA \@
00110 LDX A
20120 \.A STA P X+
00130 CHMPX #EGQ0
00140 BNE \.A
po15e¢ \.B JSR [$A000]
o160 BEQ \+B
02190 ENDM

The \0 and \1 are dummy values. The assembler re-
places these numbers with the values you specify when
you call GRAPH.

The following program calls GRAPH2 three times. Each
time it passes two different sets of values:

00100 ORG $1200
981190 BEGIN JMP START
00120 FDB DONE-BEGIN
00130 START +*

poi140 oPT MEX

02159 INCLUDE MACROZ/ASH
o160 GRAPHZ2 #EFQ #4400
00170 GRAPH2 #EF8 #4450
00180 GRAPHZ2 #$F7 ,#$500
00190 CLR %71

po2e0 JMP [$FFFE]
00219 DONE *

o220 END

When the assembler expands the macro, it replaces the
dummy values with the values passed by the macro call.
For example, the second time GRAPH2 is called, the
assembler replaces \0 with #$F8 and replaces \1 with
#$450.

Assemble the above program. Note that each time the
assembler expands GRAPH2, it replaces the \.A and
\.B symbols with different symbol names: First AOOOO
and B000O, then A0001 and B00O1, and finally AQ002
and B0002.

If the assembler used the same symbol names in each
expansion, it would be forced to assign different value to
the symbols in each expansion. You would get a MULTI-
PLY DEFINED SYMBOL error.

Also, note the assembler has inserted an additional sym-
bol, NARG, in the symbol table. NARG is always set to
the number of values passed in the most recent macro
call.

in the sample program, the symbol table shows that
NARG is set to “2” at the end of the assembly. This
shows that there were two values passed to GRAPH2
the last time it was called.

You might want to use NARG as a variable in your pro-
gram. For example, you could conditionally assemble
parts of a macro definition based on the current value of
NARG.

To see the program run, assemble it to disk, press a key
three times to see different graphics and then end the
program.

Format of Macros

The remainder of this chapter gives details on the format
to use in a macro definition and macro call.

Macro Definition

Beginning the Definition

Use this format for beginning the macro definition and
assigning it a name:

MACRO
symbol is the name of the macro. It is, of course, required.

symbo/

Using Symbols in the Definition

Use this format to name any symbols you use within a
macro definition:

\.Cc

¢ is an alpha character (A-Z). When the assembler ex-
pands the macro, it replaces \.c with:

cnnnn

nnnn is a 4-digit hexadecimal number that the assembler
increments each time the assembler expands the macro.

52

For example, if you use the symbol \.M in the macro
definition and you call the macro 10 times, the assem-
bler replaces \.M with these symbol names:

ist expansion M0001
2nd expansion M0002
10th expansion M0OOA

You must use this symbol-name format when calling a
macro more than once. Otherwise, you get MULTIPLY
DEFINED SYMBOL errors.

Using Dummy Values in the Definition

Use this format for specifying dummy values within a
macro definition:

\n

nis an alphanumeric character (0-9,A-Z). The assembler
replaces this dummy value with a corresponding value in
the macro call line:

\0 is replaced with the 1st value
\1 is replaced with the 2nd value

\9is r.eplaced with the 10th value
\A is replaced with the 11th value

\Z is replaced with the 36th value
For example, this line in a macro definition:
LDA \B

specifies \B as a dummy value. The assembler replaces
\B with the 12th value in the macro call line. If the mac-
ro call line is:

ADD NUMD sNUM1 »NUMZ s NUM3 s NUM4 »
NUMS sNUMB sNUM7 s NUMB sNUMS sNUMA »NUMB

the assembler replaces \B with NUMB.

You do not need to assign macro call values to dummy
values in consecutive order. For example:

GRAPHX #4F9 #4400 ,85600
GRAPHX MACRO

L.DX Al

LDY \2

LDA Ay

LDB \N@

ENDM

Here, the assembler replaces dummy value \1 with

#%$400, replaces dummy value \2 with #$600, and, in
two lines, replaces dummy value \0 with #$F9. Note
that you can pass a value to a macro more than once,
as this example does with #3$F9.

If there are more dummy values than values in a macro
call, a byte overflow error results.

If there are more values than dummy values in a macro
call, the extra values are ignored.

Be sure not to enclose dummy values in quotes. If you do
this, the assembler treats them as ordinary characters.

Ending the Macro Definition
Use this format for ending the macro definition:
ENDM

You may not use a symbol to label this line. If you do so,
you get a MISSING END STATEMENT error at the end
of the assembly listing.

Macro Call

Use this format when passing values to a macro in a

macro call line:
macro call string1, string2, ...

macro call is the name of the macro.

string(s) is the value being passed to the macro. It can
be 1 to 16 characters (any extra characters are ignored).

Each string, except the last, must be separated by a
comma. The last string must be terminated by a comma,
space, carriage return, or tab.

Each string may contain any characters except a car-
riage return. If a string contains a comma, space, tab, or
left parenthesis, you must enclose it in parentheses. For
example, in this macro call:

PRINT (ABC sDEF)

the assembler interprets ABC,DEF as a single string.
However, in this call:

PRINT ABC :DEF

the assembler interprets ABC as one string and DEF as
another.

Hints on Macros

e Remember to define a macro before calling it. If you
call a macro without defining it, you get a BAD
OPCODE error.

53

_EDTASM

12 / USING MACROS

e We recommend storing all macro definitions in a file cover the error until you call the macro. The assem-
and then using INCLUDE to insert them into your bler waits until you call the macro before it assembles
main program. it.

e Do not use a mnemonic or pseudo op as a macro ® You cannot “nest” macro definitions. That is, one
name. This causes the assembler to redefine the macro definition cannot call another.

Lner;;mgg ic or pseudo op according to the macro e Using the same macro more than once uses a large
) amount of memory. Expand a large macro only once.
o |f the macro definition has an error, you will not dis- When you want to use it again, call it as a subroutine.

54

SECTION IV

ROM AND DOS
ROUTINES

EJTASM

SECTION IV

ROM AND DOS ROUTINES

In an assembly language program, the sim-
plest way to use the 1/O devices is with ROM
and DOS routines. This section shows how.

Complete lists of the ROM routines and DOS
routines are in the reference section.

55

Chapter 13/
Using the Keyboard and Video Display
(ROM Routines)

The Color Computer uses its own machine-code
routines to access the screen, keyboard, and tape.
These routines are built into the computer's ROM. You
can use the same routines in your own program.

Appendix F lists each ROM routine and the ROM
address that points to it. This chapter uses two of these
routines, POLCAT and CHROUT, as samples in show-
ing the steps for using ROM routines.

Steps for Calling ROM
Routines

We recommend these steps for calling a ROM routine:

1. Equate the routine’s address to its name. This lets
you refer to the routine by its name rather than its
address, making your program easier to read and
revise.

2. Set up any entry conditions required by the routine.
This lets you pass data to the routine.

3. Preserve the contents of the registers. Since many
routines change the contents of the registers, you
might want to store the registers’ contents temporarily
before jumping to the routine.

4. Call the ROM routine, using the indirect addressing
mode.

5. Use any exit conditions that the routine passes back
to your program.

6. Restore the contents of the registers (if you tempo-
rarily preserved them in Step 3).

Sample 1
Keyboard Input with
POLCAT

POLCAT “polis” the keyboard to see if you press a key.
If you do not, POLCAT sets Bit Z.

If you do press a key, POLCAT:

(1) Clears Bit Z of Register CC and
(2) Loads Register A with the key's ASCII code.

This short program uses POLCAT to poll the keyboard.
When you press a key, the program ends:

ORG $1200
BEGIN JMP START

FDB DONE-BEGIN
POLCAT EQU $A000
START PSHS DPsCC+X»sY U
WAIT JSR [POLCAT]

BEQ WAIT

PULS DPsCC XY U

CLR $71

JMP [$FFFE]
DONE *

END

This is how we applied the above steps in writing this
program:

1. Equate POLCAT to its Address

This equates POLCAT to $A000, the address that points
to POLCAT's address:

POLCAT EQU $A000

57

EDUASM

13 / USING THE KEYBOARD AND VIDEO DISPLAY

2. Set Up Entry Conditions
POLCAT has no entry conditions.

3. Preserve the Registers’ Contents

POLCAT's “Exit Conditions” state that POLCAT mod-
ifies all registers except B and X. Assume that you want
to preserve the contents of Registers DP, CC, X, Y, and
U. To do this, you can “push” these values into the
“hardware stack™:

PSHS DPsCC XY U

(The hardware stack is an area of memory, pointed to by
Register S, that the processor uses for subroutines.
PSHS “preserves” the contents of certain registers by
storing them in the hardware stack.)

4. Jump to POLCAT

This jumps to POLCAT using its indirect address:
WAIT JBR CPOLCATI]

5. Use Exit Conditions

For now, assume you want to look only at the status of
Bit Z to see if a key has been pressed:

BEQ WAIT

The above instruction branches back to WAIT (the JSR
[POLCAT] instruction) unless you press a key. (Pressing
a key causes POLCAT to clear Bit Z.)

6. Restore the Register’s Contents

This “pulls” (inserts) the contents of the hardware stack
back into the registers:

PULS DPsCC XY U

Now, the above registers are restored to the data they
contained before executing the POLCAT routine.

Sample 2
Character Output with
CHROUT

The CHROUT routine prints a character on either the
screen or printer. On entry, it checks two places:

e Register A — to determine which character to
print

® Address $6F — to determine whether to print it
on the screen or the printer

This program uses CHROUT to print “This is a Mes-
sage” on the screen. It then uses POLCAT to wait for

you to press a key before returning to BASIC.

ORG %1200
*x¥%%% Equates for Routines *¥¥¥¥¥
POLCAT EQU $A0PR
CHROUT EQU $A002
DEVNUM EQU $6F
REFERXXERXXX Variable HERXEEXRXEEEN
SCREEN EQU a0
*%% DOS Progdramming Convention ¥¥¥
BEGIN JMP START

FDB DONE-BEGIN
FHFEXXE* Print the Messade #E¥EXX*E
START 1.DB #S5CREEN

STB DEVUNUM

LDX #MSG
PRINT LDA s ¥+

JER [CHROUT]

CMPA #3%0D

BNE PRINT
¥eE*F¥E*E Wait Ffor a Key HEXXFEXEH
INPUT PSHS DPsCCX Y U
WAIT JER [POLCATI

BEQ WAIT

PULS DPCCX Y sU

CLR 71

JMP [$FFFE]

FEERFEXFAEFXE Mpscade HXEXREXRRRXXEER

M8G FCC ‘THIS IS A MESSAGE’
FCB 8D
¥E%#X%%% Memory for Stack HEEXX¥**
DONE *
END

Most of the steps we used in writing this program are
obvious. What may not be obvious is the way we set up

CHROUT'’s entry conditions, Address $6F and Register

A
These lines set Address $6F to 00 (the screen):
DEVNUM EQU $6F
SCREEN EQU 0
START LDB #SCREEN
5TB DEVNUM

58

EUTASM

Setting Register A involves two steps. First, point Regis-
ter X to the message:

MSG FCC ‘THIS IS5 A MESSAGE’
FCB $0D
LDX #MEG

and then load Register A with each character in the mes-
sage:

PRINT LDA s K+
JSR [CHROUT]
CMPA #%0D

BNE PRINT

Sample 3
POLCAT and CHROUT

This combines POLCAT with CHROUT. It prints on the
screen whatever key you press. When you press (P
(hexadecimal 0A), the program returns to BASIC:

ORG $1200

##¥¥% Equates for Routines *E%¥x%
POLCAT EQU $A000
CHROUT EQU *A002

DEVNUM EQU $6F

FHRERNR¥HEK% Uariable *¥EXEXXEEEES
SCREEN EQU 2]

%% DOS Prodramming Conuvention #%%
BEGIN JMP MAIN

FDB DONE-BEGIN

HUFEEXXAXXE Main Prodram HERXXFEXNS
MAIN JSR INPUT
CMPA #%$0A

BEQ FINISH
JSR PRINT
BRA MAIN
FINISH CLR $71
JMP [$FFFE]
¥ Input a Character from Kevboard #

INPUT PSHS DP,CCs¥ ¥ U
WAIT JOR [POLCATI]
BEQ WAIT
PULS DPsCC XY U
RTS

¥¥ Print a Character on Display ##%
PRINT L.DB #SCREEN

STB DEVYNUM

J8R [CHROUT]

RTS
*ERKERKE Memory for Stack **rFxxxs
DONE *

END

59

Chapter 14/
Opening and Closing a Disk File
DOS Routines — Part |

Because of the organization and timing of a disk, reading
it and writing to it are complex. This is why you'll want to
make use of DOS routines in your disk programs.

This chapter shows how to use DOS routines to open
and close a disk file. The next chapter shows how to use
them to read a disk and write to it. Reference H contains
a complete list of all the DOS routines supported by
Radio Shack.

Overview

All DOS routines, like ROM routines, have their own en-
try and exit conditions. However, most DOS routines
have more involved entry conditions than do ROM
routines. They require you to set up three areas in mem-
ory: two “buffers” and a “data control block.”

Buffers

Buffers are areas in memory that DOS uses for storing
data to be input or output to disk. DOS requires that you
reserve two buffers:

® A logical buffer — This can be any length. Your pro-
gram uses this to store data for DOS to input or output
to disk.

e A physical buffer — This must be 256 bytes. DOS
uses this to hold data temporarily so that it can input
and output the data to a disk sector in 256-byte
blocks.

For example, suppose you want to output 100 10-byte
records to disk. You can send each record, one at a
time, to the area you reserved as the logical buffer.

DOS then transfers the records from the logical buffer to
the area you reserved as the physical buffer. As soon as

there are 256 bytes in the physical buffer, DOS sends
them out to a disk sector.

You need not be concerned that DOS’ “physical” rec-
ords are a different size from your program’s “logical”
records. DOS handles the “spanning” of logical records
into physical records internally. Except for reserving
memory for a physical buffer, you do not need to be con-
cerned with physical records.

Data Control Block

A data control block is a 49-byte “block” of memory that
DOS uses to control a disk file. You need to reserve this
block of memory for each disk file you are using. If you
have three disk files open at the same time, you need to
reserve three 49-byte data control blocks.

Reference G shows how DOS uses each of the 49
bytes, numbered 0-48, in the data control block. As you
can see, DOS divides the data control block into 21
data-control segments.

Before opening a file, you must load the proper data into
four of the segments of the data control block (DCB):

DCB Segment DCB Address You must load

with . ..
Filename Bytes 0-7 The eight-
(DCBFNM) character name
of your file.
Extension Bytes 8-10 The three
(DCBEXT) character
extension of
your filename.
Drive Number Byte 33 The drive
(DCBDRYV) containing the
disk file.

61

EJiASM

14 / OPENING AND CLOSING A DISK FILE

Physical Byte 36-37 The first

Buffer Address address of

(DCBBUF) the physical
buffer you

have reserved.

For example, if you want to open a file in Drive 1, you
need to load “1” into the DCBDRYV location, which is the
33rd byte of the data control block.

You need not be concerned with most of the remaining
segments of the data control block, unless you want to
use them as data in your program. They are handled
internally by DOS. The exceptions to this are:

® Logical Buffer Address, Record Size, Variable Record
Terminator, and Logical Record Number — You need
to use these when you read and write to the file. They
are discussed in the next chapter.

® File Type and ASCII Flag — If you want your file to be
compatible with BASIC and other Radio Shack pro-
grams, you need to set these when you create the file.
See the “Technical Information” chapter of your Disk
System Owners Manual and Programming Guide.

Steps for Using DOS
Routines

The steps for using DOS routines are:

1. Equate the routine’s address (for ease in reading the
program).

Reserve memory for a physical buffer, logical buffer,
and the DCB.

Clear the DCB and the physical buffer. You need to
make sure they do not have extraneous data.

. Set up all other entry conditions. Besides setting up
registers, you need to load certain segments of the
DCB with data. Which segments you load depends
on the DOS routine you are using.

Preserve the contents of the registers. DOS routines
change the contents of many of the registers. To be
safe, you should preserve all of them that you want to
use later in your program. Be sure to preserve Regis-
ters U and DP. If DOS changes their contents, your
program acts unpredictably.

6. Call the routine.
Restore the contents of the registers.

8. Use all exit conditions. Most DOS routines return an
error code in Register A if the routine did not work
properly. If there were no errors, Register A contains
a zero.

Sample Session
Opening and Closing
a Disk File

The DOS routines for opening and closing a file are
OPEN and CLOSE. Both routines check Register U for
the address of DCB. They expect to find the four seg-
ments described above in this block.

OPEN also expects you to set a file mode in Register A.
It creates or opens an existing file depending on the
mode you set.

Both routines return a status code in Register A. Refer-
ence | tells the meaning of the status codes.

Figure 8 at the end of this chapter is a sample program
which creates, opens, and closes a disk file named
WORKEFILE/TXT. After running this program, you can
look at your directory to see that the program has cre-
ated this file. This shows how we applied the above
steps in this program.

1. Equate OPEN and CLOSE

This equates OPEN and CLOSE to $600 and $602, their
indirect addresses:

OPEN
CLOSE

EQU
EQU

$600
$602

2. Reserve Memory for
Buffers and DCB

The OPEN and CLOSE routines use only the physical
buffer, not the logical buffer. This stores 256 bytes for
the physical buffer and uses PBUF to label those bytes:

PBUF RMB 236

This reserves memory for a 49-byte DCB and stores the
filename, WORKFILE, and the extension, TXT, in the
first 11 bytes:

DCB EQU *
FCC ‘WORKFILE'
FCC ‘TAT
RMB 38

62

3. Clear DCB
This clears all but the first 11 bytes of DCB:

RCLEAR LDX #DCB+11

CLEAR1 CLR P K+
CMPX #DCB+48
BNE CLEAR1
LDX #PBUF

and this clears the physical buffer:

CLEARZ CLR)+
CMPX #PBUF+255
BNE CLEARZ
RTS

4. Set Up Entry Conditions

On entry, OPEN and CLOSE require you to: (1) Set
Register U to a DCB containing a filename, extension,
drive number, and physical buffer address, and (2) Set
Register A to a file mode.

Setting Register U

This sets Register U to the address of the first byte of
the DCB:

LDU #DCB

The following lines set the drive number segment to 0.
They do this by storing DRVNUM (0) into DCBDRYV (33)
+ the contents of Register U (DCB). This inserts 0 into
the 33rd byte of DCB:

DCBDRV EQU 33
DRUNUM FCB o
LDA DRUNUM
STA DCBDRV sU

The following lines set the physical buffer address to
PBUF. They do this by storing the address of PBUF into
the memory address pointed to by Register U plus
DCBBUF. This stores PBUF in the 36th byte of DCB:

DCBBUF EQU 36
LDX #PBUF
STX DCBBUF »U

(The filename and extension were set in Step 2.)

Setting Register A
This table shows how you should set each bit in Register

A to select one or more file modes:

MODE BIT DECIMAL NUMBER
(IF SET)
Read Bit O 1
Write Bit 1 2
Create Bit 2 4
Extend Bit 3 8
Work File Bit 4 16
(delete the file, when closed)
FAT Bit 5 32
(rewrite to the FAT* only when closed)
Shared Buffer Bit 6 64

* The disk directory’s FAT (file allocation table) is de-
scribed in the “Techncial Information” chapter of the
Disk System Manual.

The sample program loads Register A with decimal
14+2+4+8+32:

LDA

This tells DOS to set the file mode to read (decimal 1),
write (decimal 2), create (decimal 4), extend (decimal 8),
and rewrite the FAT only when the file is closed (decimal
32).

#1+2+4+8+32

5. Preserve Registers
This preserves the contents of Registers U and DP:
ROPEN PSHS u.:DP

6. Jump to the DOS Routine

These lines jump to OPEN and CLOSE:

JSR [OPEN]
JSR [CLOSE]

7. Restore Registers
This restores the contents of Registers U and DP:
PULS UsDP

8. Use Exit Conditions

The sample program branches to an error handling sub-
routine after each DOS routine. The subroutine tests
Register A to see if it contains a non-zero value. If so, it

63

14 / OPENING AND CLOSING A DISK FILE

prints the status code on the screen and waits for you to

press a key:
JSR ERROR
TSTA
BEQ RETURN
STA $450

WAIT J8R [POLCATI]

BEQ WAIT
RETURN RTS

Figure 8. Sample Program to Open and Close a File

ORG 1200
#Equates for DOS and ROM routines ##%
OPEN EQU t500
CLOSE EQU $602
POLCAT EQU $A00D
**x%%* Equates for DCB offsets #%%%xkxs
DCBDRV EQU 33
DCBBUF EQU 36
#%%##D05 Prodramming Convention *%¥%*
BEGIN JMP MAIN
FDB DONE-BEGIN
EREEXXXEXXRXEMAain Program **EXEHEXXE%¥
MAIN JSR RCLEAR
JER ROPEN
JSR RCLOSE
CLR %71
JMP [$FFFE]

xx%¥¥Routine to Clear the DCB ***%**
#¥%x%%%%% and Physical Buffer #¥x%*%xxs

RCLEAR LDX #DCB+11

CLEAR1 CLR 1 ¥+
CMPX #DCB+48
BNE CLEARI]
LDX #PBUF

CLEARZ CLR s X+
CMPX #PBUF+255
BNE CLEARZ2
RTS
xx%x¥*Routine to Oren a File *#¥%%%%
ROPEN PSHS UsDP
LDU #DCB
I.DA DRVNUM
STA DCBDRV U
LDX #PBUF
STX DCBBUF U
LDA #1+2+4+8+32
JSR [LOPEN]
PULS U:DP
JSR ERROR
RTS
#%%%% Routine to Close the File #%%%%%
RCLOSE PSHS uUsDP
LDU #DCB
JSR [CLOSE]
PULS usDP
JER ERROR
RTS
*%¥%%%¥¥Error Handling Routine *%¥*®%x%%
ERROR TSTA
BEQ RETURN
STA 450
WAIT JSR [POLCATI
BEQ WAIT
RETURN RTS

*¥% Memory for Buffers and Stacks ®#%%%
PBUF RMB 256

#¥kkx*%*Memory for Variables **xx¥éx*
DRUNUM FCB 00

¥exEAXEXEX*Memory Tor DCB *%¥%%¥AXEX¥

(91M].] EQU *
FCC ‘WORKFILE’
FCC TR
RMB 38
HEREERERERRREEAERRERRR R RRRERERERER
DONE EQU *
END

64

Chapter 15/
Reading and Writing a Disk File
DOS Routines — Part 2

DOS has a WRITE routine for writing to a file and a
READ routine for reading it back into memory. The way
you use these routines depends on which method you
are using to access the file:

® Sequential Access
e Direct Access

This chapter describes how to use these two methods in
their simplest forms. You can use any variation of them
that you want.

Sequential vs. Direct Access

Sequential Access
(For Files with Variable-Length Records)

Sequential access lets you read and write to files with
variable-length records. Using this method, you insert a
terminator character at the end of each record. This
character tells DOS where each record ends.

Before writing data to the file, you must load DCB with
the following:

DCB Segment DCB Address You must

load with. ..
Logical Bytes 39-40 The first
Buffer Address address of the
(DCBLRB) logical buffer
you have
reserved
Terminator Byte 19 The character
Character you select
(DCBTRM) to end each
record

When reading data from just one file, you need only
specify the logical buffer address, not the terminator
character. DOS reads the terminator character from the
disk’s directory into DCBTRM.

Figure 9 at the end of this chapter is a program that
writes to a file using $0D (the character) as a
terminator character. Figure 10 reads the same file back
into memory.

Direct Access
(For Files with Fixed-Length Records)

Direct access works only with files containing fixed-
length records. With this method, DOS uses the record
size and record number to access the record.

Before reading data from the file or writing data to it, you
must set this DCB segment:

DCB Segment DCB Address You must
load with . .
Logical Bytes 39-40 The address
Buffer Address of the first
(DCBLRB) byte of the
logical buffer
you have
reserved

Unless you are using the record size already in the file’s
directory, you must also set:

Bytes 17-18 The size of

each record

Logical Record

Size (DCBRS2)

65

EdiASM

15 / READING AND WRITING A DISK FILE

If you want to write a record which is not sequentially the
next one, you must also set:

Logical Bytes 46-47 The number of

Record Number the record

(DCBLRN) you want to
access

Setting the
Read/Write Option

DOS requires that you set Register A with a “read/write
option” before entering the READ or WRITE routines.
The read/write option lets you specify:

¢ Whether you want direct or sequential access

e Whether you want DOS to point to the next record
after reading or writing the record

To set the read/write option, load the first two bits of
Register A with one of these four values:

Decimal
Read/Write Option Bits Number
Direct Access 00 0
Point to next record
Sequential Access 01 1
Point to next record
Direct Access 10 2

Do not point to next record

Sequential Access 11 3

Do not point to next record

For example:
LDA #2
JER [READ]

tells DOS to write the record sequentially (up to the ter-
minator character). When finished, DOS points to the
next sequential record.

Figure 9. Sample Program to Write to a File

ORG $1200
#*¥Equates for DOS and ROM routines #*#*
OPEN EQU $6¢0
CLOSE EQU +602
WRITE EQU $606
POLCAT EQU AP0

**%%%% Equates for DCB offsets #¥*¥e%x

DCBTRM EQU 19
DCBDRV EQU 33
DCBBUF EQU a6
DCBL.RB EQU 39
*¥#%%%D0S Prodramming Convention *#*%%%
BEGIN JMP MAIN

FDB DONE-BEGIN
HERREXXEXEEXMAin Progdram *FEXEFEEEEXR
MAIN JER CLEAR

JER INTDCB

JSR SOPEN

JER SPRINT

JER SWRITE

JER SCLOSE

CLR %71

JMP [$FFFE]

*kx¥%*Routine to Clear the DCB *#*%*x%
and the Phvysical and Lodical Buffers

CLEAR LDX #PBUF
CLEAR1 CLR X+
CMPX #PBUF+255
BNE CLEAR1
LDX # BUF
CLEARZ CLRr PR+
CMPX # BUF+24
BNE CLEARZ
LDX #DCB+11
CLEAR3 CLR t R+
CMPX #DCB+48
BNE CLEAR3
RTS

EXXREFX¥¥® Routine to Insert #X%kEXEEXREXH¥
¥EEAXAEXX%%* Ualues in the DCB % %% %% %% % %%

INTDCB LDU #DCB
LDA DRUNUM
STA DCBDRV sU
LDA #$0D
5TA DCBTRM sU
LD¥ #PBUF
8TX DCBBUF »U
LDX #LBUF
STX DCBLRB sU
RTS

*¥EX¥%%%¥Routine to Oren a File *¥x¥¥¥x¥

SOPEN LDU #DCB
PSHS U,DpP
LDA #1+2+4+8+32
JSR [OPEN]
PULS u,DP
JER ERROR
RTS

EKEXXFEROULINE 10 Print Msgd #¥#E¥¥¥H*

66

EDTASM

SPRINT LDY
LDX

CHAR LDA
STA
CMPA
BNE
LDX
LDY

#4500
#MSG
P X+
PV +
#$3A
CHAR
#LBUF
#4525

#¥¥%X¥%¥ Routine to Input Data ##%k%k%*
EREXEEXEERE Trom Kevyboard ¥E¥EFX%HEEHH*

SINPUT PSHS U:DP Y
WAITI1 JSR [POLCAT]
BEQ WAITI
PULS UsDP Y
STA Y+
STA P X+
CMPA #$0D
BEQ ENDINP
CMPX #LBUF+24
BNE SINPUT
ENDINP RTS

¥¥x%%%% Routine to Write Data ¥#*¥¥¥x%*x
EREREREERKRRER L0 File ¥XXEXRERERRREXES

¥RkAxe%x*¥Memory for Messade HEXFEXEEF

MEG FEC "ENTER YOUR NAME:’
HEERREREREEREREEEERRRE R A RRERRRRRR R K
DONE EQU *

END

Figure 10. Sampie Program to Read to a File

Note: When running this program, a status code
(generated by the Error subroutine) may appear
on your screen. Press any key to continue
program execution.

SWRITE PSHS u.:DP

LDU #DCB

LDA #1

JER [WRITE]

PULS u:DP

JBR ERROR

RTS
*%%%%%% Routine to Close File #%%x%xx%%%
SCLOSE PSHS UsDP

LDU #DCB

JSR [CLOSE]

PULS U:DP

JSR ERROR

RTS
*¥%%%%¥Error Handling Routine #¥%%%%%#
ERROR TSTA

BEQ RETURN

STA $450
WAITZ JER [POLCAT]

BEQ WAITZ
RETURN RTS
*%% Memory for Buffers and StacKs ®%#%%
PBUF RMB 256
LBUF RMB 29
¥xxxx¥¥Memory for Variables **x®xxxxx
DRUNUM FCB a0
¥kExERX*E*¥%¥Memory for DCB ¥EXXXEEXRXHE
pCB EQU *

FCC ‘WORKFILE'

FCC ‘THRT !

RMB 38

ORG $1200
**¥Equates for DOS and ROM routines *#
OPEN EQU $600
CLOSE EQU $602
READ EQU $604
POLCAT EQU +AGOO
CHROUT EQU $A002
*%%%%% Equates for DCB offsets *¥¥xx*x**
DEUNUM EQU $6F
SCREEN EQU @
DCBTRM EQU 18
DCBDRV EQU 33
DCBBUF EQU 36

DCBLRB EQU

39

*%%%%D0S Prodramming Convention *¥*x¥¥

BEGIN JMP MAIN

FDB DONE-BEGIN
FEEFERERREREMAin Program ¥*EEEEeeeids
MAIN JSR CLEAR

JSR INTDCB

JSR SOPEN

JSR SREAD

JSR SCLOSE

JSR SPRINT

CLR $71

JMP [$FEEE]

¥¥x%%¥Routine to Clear the DCB **x****
and the Physical and Logical Buffers

CLEAR LDX #PBUF
CLEARI1 CLR 1 X+
CMPX #PBUF+255
BNE CLEARI
LDX # BUF
CLEARZ CLR 1 X+
CMPX # BUF+24
BNE CLEARZ
LDX #DCB+11
CLEAR3 CLR 1 X+
CMPX #DCB+48
BNE CLEAR3
RTS

67

15 / READING AND WRITING A DISK FILE

*%%AXX%** Routine to Insert #*#kEkEXEkH*
nu%%%* Yalues in the DCB ##%¥¥xkkk®*

INTDCB LDU #DCB
LDA DRVNUM
STA DCBDRV sU
LDA #50D
STA DCBTRM U
LDX #PBUF
STX DCBBUF »U
LDX #BUF
STX DCBLRB »U
RTS

#¥%%%¥Routine to OrPen a File #¥¥x¥*x

SOPEN PSHS U:DP

L.DU #DCB

LDA #E2F

JER [OPEN]

PULS u.DP

JSR ERROR

RTS
#¥%%*¥Routine to Read a File **¥¥¥xx*
SREAD PSHS U:DP

LDU #DCB

LLDA #3

J8R [READ]

PULS u,DP

JSR ERROR

RTS
%k¥%%#%% Routine to Print Data ®%¥x¥*¥
SPRINT LDB #SCREEN

STB DEVUNUM

LDX #LLBUF
PRINT LDA 1A+

JER [CHROUT]
CMPX # .BUF+24
BNE PRINT
WAITI1 JER [POLCATI
BEQ WAIT1
RTS
¥%%k%%% Routine to Close File ##¥%*x%x
SCLOSE PSHS UsDP
LDU #*DCB
JSR [CLOSE]
PULS U+DP
JBR ERROR
RTS
#*%*%%%*Error Handling Routine *%*¥%*%
ERROR TSTA
BEQ RETURN
STA 450
WAITZ JSR [POLCATI
BEQ WAITZ2
RETURN RTS

*%% Memory for Buffers and StacKs ¥%%%
PBUF RMB 256
LBUF RrRMB 25
¥¥%kxx*k%%Memory for VYariables *¥*%x%%x
DRVNUM FCB 00
EXEARRRRRXENMemoTry For DCB *#HEXXXEXEXH

pCs EQU *

FCC ‘"WORKFILE"’

FCC ‘TXT !

RMB 38
EEERERERRREREEREERRREERREERRRERRRER AR
DONE EQU *

END

68

SECTION V/

REFERENCE

EJTASM

SECTION V/

REFERENCE

This section summarizes all the features of the
Disk EDTASM.

69

ETASM

Reference A/
Editor Commands

Definition of Terms

line
A line number in the program. Any lines between 0-63999 may be used. These symbols may be used:

First line in the program
* Last line in the program
Current line in the program

current line
The last line inserted, edited, or printed.

startline
The line where an operation will begin. In most commands startline is optional. If startline is omitted, the current line is
used.

An asterisk (*) denotes a comment line when used as the first character in the line.
range

The line or lines to use in an operation. If the range includes more than one line, they must be specified with one of
these symbols:

to separate the startline from the ending line
, to separate the startline from the number of lines

increment
The increment to use between lines. In most commands, increment is optional. If the increment is omitted, the last
specified increment is used. On startup, increment is set to 10.

filespec
A DOS disk file specification in the format:

filename/ext:drive

COMMANDS PAGES
DISCUSSED

71

A / EDITOR COMMANDS

Cstartline, range, increment
Copies range to a new location beginning with startline using the specified increments. start-
line, range, and increment must be included.

C500,100:150,10

Drange
Deletes range. If range is omitted, current line is deleted.

Dioo D199:135@¢ D

Eline
Enters a line for editing. If line is omitted, current line is used.

Ei100 E
These are the editing subcommands:

>

Cancels all changes and restarts the edit.
nCstring Changes n characters to string. If n is omitted, changes
the character at the current cursor position.

nD

I m

| string

r X

nScharacter

Deletes n characters. If n is omitted, deletes character at
current cursor position.

Ends line editing and enters all changes without display-
ing the rest of the line.

Deletes rest of line and allows insert.

Inserts string starting at the current cursor position.
While in the mode, deletes a character, and SHIFT)
@ ends the mode.

" Deletes all characters from the current cursor position to

the end of the line.
Lists current line and continues edit.
Searches for nth occurrence of character. If n is omitted,

searches for the first occurrence.

Extends line.

Ends line editing, enters all changes and displays the
rest of the line.

Escapes from subcommand.

Moves cursor n positions to the right. If n is omitted,
moves one position.

Moves cursor n positions to the left. If n is omitted,
moves the cursor one position.

:2 »
0 88 5

m

20

3

Fstring
Finds the string of characters. Search begins with the current line and ends each time string is
found. If string is omitted, the last string defined is used.

FABC F

Hrange

Prints range on the printer. If range is omitted, the current line is printed.
Hi00 Hig@:200 H

Istartline,increment

Inserts lines up to 127 characters long beginning at startline, using the specified increment.
startline and increment are optional.

I1130,5 1200 I,10

72

EdiASM

K
Returns to DOS.

LCA filename
Loads filename from tape into the edit buffer. A is optional. If included, filename is appended to
the edit buffer. If filename is omitted, the next tape file is loaded.

LC SAMPLE/EXT LCA SAMPLE/EXT

LDA filespec
Loads the specified file from disk into the edit buffer. A is optional. If included, filespec is
appended to the current contents of the edit buffer. If extension is omitted, /ASM is used.

LD SAMPLE/EXT LDA SAMPLE/EXT

Mstartline, range, increment
Move command, works like copy except the original lines are deleted.

Nstartline, increment
Renumbers beginning at startline, using the specified increment. startline and increment are
optional.

N10@,50 N1@® N

(o]

Shows the hexadecimal values of (1) the first available memory address, (2) the last available
address, and (3) USRORG, the address where the assembler originates an /IM assembly with
the /MO switch. Then, prompts you to change USRORG.

0

Prange
Displays range on the screen.

P100:200 P15 P# P+
P (Prints 15 lines to the screen)

Q
Returns to BASIC.

R startline, increment
Allows you to replace startline and then insert lines using increment. startline and increment
are optional.

R10D 10 Ri100O R
S
Shows the current printer parameters and lets you change them.
Trange
Prints range to the printer, without line numbers.
Tigo Ti00:500
Vfilename

Verifies filename (a tape file) to ensure that it is free of checksum errors. Works like BASIC's
SKIPF command. If filename is omitted, this command verifies the next file found.

WC filename
Writes filename to tape. If filename is omitted, NONAME is used.

73

A / EDITOR COMMANDS

WD filespec
Writes filespec to disk. If the extension is omitted, ASM is used.

WD SAMPLE/EXT

z
Jumps to ZBUG (EDTASM system only).

Scrolls up in memory.

®

Scrolls down in memory.

(SHIFD) CLEAR)

Is used to create a backslash (\).

74

_EDASM

Reference B/ Assembler
Commands and Switches

COMMANDS PAGES
DISCUSSED

AC filename switch . ..

Assembles the source program into machine code. If you specify the /IM switch, the assembly
is in memory. If you specify filename, the assembly is saved on tape as filename. If you omit
both filename and switch, the assembly is saved on tape as NONAME.

AD filespec switch . ..
Assembles the source program into machine code. Either the /IM switch or filespec is required:
With /IM, the assembly is in memory; with filespec, the assembly is on disk. The D is optional.

There must be a space between filespec and switch.
The switches are:

/AO Absolute origin.(Applies only If /IM is set.)
/M In-memory assembly.
/LP Assembly listing on the printer.
/MO Manual origin. (Applies only if /IM is set.)
/NL No listing printed.
/NO No object code generated.
/NS No symbol table generated.
/SR Single record.
/SS Short screen.
/WE Wait on assembly errors.
/WS With symbols.
Examples:
AD SAMPLE
AD/IM/AD

AD SAMPLE /HWE/SR
A SAMPLE/TST /WE
AC SAMPLE

AC

75

EDTASM

Reference C/
ZBUG Commands

Definition of Terms

expression

One or more numbers, symbols, or ASCIl characters. If more than one is used, you may separate them with these
operators:

Multiplication * Addition +
Division .Div Subtraction -
Modulus .MOD Equals .EQU
Shift < Not Equal .NEG
Local And .AND Positive +
Exclusive Or XOR Negative -
Logical Or .OR Complement .NOT
address

A location in memory. This may be specified as an expression using numbers or symbols.

filename
A BASIC cassette file specification.

filespec
A DOS file specification. (The same as a BASIC specification.)

COMMANDS PAGES
DISCUSSED
Cc
Continues execution of the program after interruption at a breakpoint.
D
Displays all breakpoints that have been set.
E

Exits ZBUG and enters the editor. (This applies to the EDTASM ZBUG only, not to Stand-
Alone ZBUG.)

Gaddress
Executes the program beginning at address.

C/ZBUG COMMANDS

K
Returns to DOS. (Applies to Stand-Alone ZBUG only.)

LC filename address
Loads filename from tape. The optional address offsets the file’s loading address. If filename is
omitted, the next file is loaded.

LD filespec address
Loads filespec from disk. The optional address offsets the file's loading address.

LDS filespec address1 address2

Loads filespec from disk with its appended symbol table. The optional address? offsets the
file’s loading address. The optional address2 offsets the symbol table’s loading address. Note
that address2 does not offset the values of the symbols. The D is optional.

PC filename start address end address execution address

Saves memory from start address to end address to tape. You must also specify an execution
address, the first address to be executed when the file is loaded. Filename is optional; if
omitted, NONAME is used.

PD filespec start address end address execution address
Saves memory to disk from start address to end address. You must also specify an execution
address, the first address to be executed when the file is loaded. (The D is optional.)

PDS filespec start address end address execution address

Saves memory to disk from start address to end address, with the current appended symbol
table. You must also specify an execution address, the first address to be executed when the
file is loaded. (The D is optional.)

Q
Returns to BASIC. (Applies to Stand-Alone ZBUG only.)

R
Displays the contents of all the registers.

Taddress1 address2
Displays the memory locations from address? to address2, inclusive.

THaddress1 address2
Prints the memory locations from address? to address2, inclusive.

Usource address destination address count
Transfers the contents of memory beginning at source address and continuing for count bytes
to another location in memory beginning with destination address.

Vfilename
Verifies date on the specified file or, if no filename is specified, the next file on tape.

Xaddress

Sets a breakpoint at address. If address is omitted, the current location is used. Each break-
point is assigned a number from 0 to 7. The first breakpoint set is assigned as Breakpoint 0. A
maximum of eight breakpoints may be set at one time.

Yn
Deletes the breakpoint referenced by the n number. If n is omitted, all breakpoints are deleted.

78

Examination Mode Commands

A ASCIl Mode

B Byte Mode

M Mnemonic Mode
w Word Mode

(The default is M)

Display Mode Commands

Half Symbolic

H

N Numeric
S Symbolic
(The default is S)

Numbering System Mode Commands

Obase Output
Ibase Input

(Base can be 8, 10, or 16. The default is 16)

Special Symbols
address/
register/

Opens address of register and displays its contents.
If address or register is omitted, the last address opened will be reopened. After the contents

have been displayed, you may type:
new value

BREAK)
@
@
address

:

" -

address,

To change the contents.

To close and enter any change.

To close and delete any change.

To open next address and enter any change.

To open preceding address.

To branch to the address pointed to by the instruction
beginning at address. If address is omitted, the current
address is used.

To force numeric display mode.

To force numeric and byte modes.

To force flags.”

To force ASCIl mode.

Executes address, if address is omitted, the next instruction is executed.

expression =

Calculates expression and displays the results.

* The colon does not actually have anything to do with the CC (status flag) register. it simply
interprets the contents of the given address AS IF it contained flag bits.

79

Reference D/ EDTASM Error Messages

These are error messages you can get while in EDTASM or EDTASMOV:

BAD BREAKPOINT (ZBUG)

You are attempting to set a breakpoint (1) greater than
7. (2) in ROM, (3) at a SWI command, (4) at an address
where one is already set.

BAD COMMAND (Editor)
An illegal command letter was used on the command
line.

BAD COMMAND (ZBUG)
You are not using a ZBUG command.

BAD FILE DESCRIPTOR (Disk,ZBug)

The filespec is not in the proper DOS format. See “About
This Manual” at the beginning of this manual for the
proper file specification format.

BAD LABEL (Assembler)

The symbol you are using is (1) not a legal symbol, (2)
not terminated with either a space, a tab, or a carriage
return, (3) has been used with ORG or END, which do
not allow labels, or (4) longer than six characters.

BAD MEMORY (Assembler)

You are attempting to do an in-memory assembly that
would (1) overwrite system memory (an address lower
than $1200) (2) overwrite the edit buffer of the symbol
table, (3) go into the protected area set by USROG, or
(4) go over the top of RAM.

If using the /AQ switch, check to see that you've in-
cluded an ORG instruction. When using /MO, check the
addresses you set for BEGTEMP and USRORG. This
could also be caused by the data not being stored cor-
rectly because of some code generated by an in-
memory assembly. See Chapter 7 for more information.

BAD MEMORY (ZBUG)

The data did not store correctly on a memory modifica-
tion. This error will occur if you try to modify ROM
addresses or try to store anything beyond MAXMEM.

BAD OPCODE (Assembler)
The op code is either not valid or is not terminated with a.
space, tab, or carriage return.

BAD OPERAND (Assembler)

There is some syntax error in the operand field. See
Section Il for the syntax of assembly language instruc-
tions.

BAD PARAMETERS (Editor,ZBug)
Usually this means your command line has a syntax
error.

BAD PARAMETERS (ZBUG)
You have specified a filename that has more than eight
characters.

BAD RADIX (ZBUG)
You have specified a numbering system other than 10, 8
or 16.

BUFFER EMPTY (Editor)
The specified command requires that there be some text
in the Edit Buffer, and there isn't any.

BUFFER FULL (Editor)
There is not enough room in the edit buffer for another
line of text.

BYTE OVERFLOW (Assembler)

There is a field overflow in an 8-bit data quantity in an
immediate operand, an offset, a short branch, or an FCB
pseudo op.

DIRECTORY FULL (Disk)

The directory does not have enough room for another
entry. Use another diskette or delete a file (using the
BASIC KILL command).

DISK FULL (Disk)

The diskette does not have enough room for another file.
Use another diskette or delete a file (using the BASIC
KILL command).

81

EDUASM

D/ EDTASM ERROR MESSAGES

DISK WRITE PROTECTED (Disk)

You are attempting to write to a diskette that has the
write-protect notch covered. Remove the write-protect
label or use another diskette.

DOS ERROR (Disk)

This indicates an internal DOS error. It usually means
either the DOS or the Editor/Assembler has been mod-
ified by the user program with harmful results.

DP ERROR (Assembler)

Direct Page error. The high order byte of an operand
where direct addressing has been forced (,) does not
match the value set by the most recent SETDP pseudo

op.

DRIVE NOT READY (Disk)
The drive is not connected, powered up, working proper-
ly, or loaded properly.

END OF FILE (Disk)
Your program is attempting to access a record past the
end of the file.

ENDC WITHOUT COND (Assembler)
The pseudo op ENDC was found without a matching
COND having previously been encountered.

ENDM WITHOUT MACRO (Assembler)
The pseudo op ENDM was found without a matching
MACRO having previously been encountered.

EXPRESSION ERROR (Assembler and ZBUG)
Either the syntax for the expression is incorrect (check
Chapter 9) or the expression is dividing by zero.

FILE NOT FOUND (Disk)
The file is not on the disk’s directory.

FM ERROR (Editor, ZBUG and Disk)

File Mode Error. The file you are attempting to load is
not a TEXT file (if in the Editor) or a CODE file (if in
ZBUG).

ILLEGAL NESTING (Assembler)
llegal nesting conditions include the following:
1. Nested macro definitions.
2. Nested macro expansions.
3. Nested INCLUDE pseudo ops.
4. INCLUDE nested within a macro definition.

I/O ERROR (Editor, ZBUG and Disk)
Input/Output error. A checksum error was encountered

while loading a file from a cassette tape. The tape may
be bad, or the volume setting may be wrong. Try a high-
er volume.

MACRO FORWARD REFERENCE

(Assembler)

A reference to the macro, which is defined on the current
line, occurs previous to the macro definition.

MACRO TABLE FULL (Assembler)
The macro table is full, any additional entries will over-
write the symbol table. This happens when all memory
allocated for the edit buffer, macro table, and symbol
table has been used. Adjust USRORG using the Origin
(O) command. (See the Chapter 7.)

MISSING END (Assembler)
Every assembly language program must have END as
its last command.

MISSING INFORMATION (Assembler)
(1) There is a missing delimiter in an FCC pseudo op or
(2) there is no label on a SET or EQU pseudo op.

MISSING OPERAND (Assembler,ZBug)
The command requires one or more operands.

MULTIPLY DEFINED SYMBOL (Assembler)

Your program has defined the same symbol with differ-
ent values. If the error occurs in a macro expansion, use
the /.1 notation to name the symbols. See Chapter 12.

NO ROOM BETWEEN LINES (Editor)

There is not enough room between lines to use the in-
crement specified. Specify a smaller increment or re-
number (N) the text using a larger increment. Remember
that the last increment you used is kept until you specify
a new one.

NO SUCH LINES (Editor)
The specified line or lines do not exist.

REGISTER ERROR (Assembler)

(1) No registers have been specified with a PSH/PUL
instruction, (2) a register has been specified more than
once in a PSH/PUL instruction, or (3) there is a register
mismatch with an EXG/TFR instruction.

SEARCH FAILS (Editor)

The string specified in the Find (F) command could not
be found in the edit buffer beginning with the line speci-
fied. If no line is specified the current line is used.

82

EJTASM

SYMBOL TABLE OVERFLOW (Assembler) SYNTAX ERROR (Assembler)

The symbol table is extending past USRORG into the There is a syntax error in a macro dummy argument.
protected area of user memory. Adjust USRORG using

the O command. See Chapter 7. UNDEFINED SYMBOL (Assembler,ZBug)

Your program has not defined the symbol being used.

83

EDTASM

Reference E/
Assembler Pseudo Ops

Definition of Terms

symbol
Any string from one to six characters long, typed in the symbol field.

expression
Any expression typed in the operand field. See Reference C, “ZBUG commands,” for a definition of valid expressions.

COMMANDS PAGES
DISCUSSED

COND expression
Assembles the instructions between COND and ENDC only if expression is true (a non-zero
value).

COND SYMBOL
SYMBOL FCB 10
VALUE FCB 3

COND SYMBOL -VALUE

Valid operators for a conditional expression are +, —, /, ». If the expression equals zero, it is
false; if non-zero, it is true.

END expression
Ends the assembly. The optional expression specifies the start address of the program.

ENDC
Ends a conditional assembly.

ENDM
Ends a macro definition.

symbol EQU expression
Equates symbol to an expression.

SYMBOL EQU $5000

85

E / ASSEMBLER PSEUDO OPS

symbol FCB expression, . ..
Stores a 1-byte expression beginning at the current address.

DATAZ FCB $33+COUNT
symbol FCC delimiter string delimiter

Stores string in memory beginning with the current address. The delimiter can be any
character.

TABLE FCC /THIS 1S A STRING/

symbol FDB expression

Stores a 2-byte expression in memory begining at the current address.
DATA FDB $3322

INCLUDE source filespec

Includes source filespec in the current position of the source program.
INCLUDE SAMPLE/ASM

symbol MACRO
Defines the instructions between MACRO and ENDM as a macro named symbol.

DIVIDE MACRO
OPT switch, ...
Uses switch to control the listing of macros when assembling the program. The switches are:
MC List macro calls (default)
NOMC Do not list macro calls
MD List macro definitions (default)
NOMD Do not list macro definitions
MEX List macro expansionns
NOMEX Do not list macro expansions (default)
L Turn on the listing (default)
NOL Turn off the listing

ORG expression
Originates the program at expression address.

ORG $3F00

PAGE
Ejects the assembly listing to the next page.

RMB expression
Reserves expression bytes of memory for data.
DATA RMB 06
symbol SET expression
Sets or resets symbol to expression.
SYMBOL SET $3500

EUTASM

SETDP expression
Sets the direct page to expression.

SETDP 20
TITLE string

Prints string as the title of each page of the assembly listing. String can be up to 32
characters.

TITLE Prodram 1

87

EJTASM

Reference F/
Rom Routines

This reference lists the indirect addresses where the Color Computer's ROM routines are stored. It also shows the
entry and exit conditions for each routine.

The name of the routine is for documentation only. To jump to the routine, you must use its indirect address (the
address contained in the brackets).

COMMANDS PAGES
DISCUSSED

BLKIN =[$A006]
Reads a block from a cassette.
Entry Conditions:
Cassette must be on and in bit sync (see CSRDON).
CBUFAD contains the buffer address.
Exit Conditions:
BLKTYP, located at $7C, contains the block type:
0=file header
1 =data
FF =end of file
BLKLEN, located at $7D, contains the number of data bytes in the block (0-255):
Bit Z in the Register CC, Register A, and CSRERR, located at Address $81, contains the
error:
Z=1, A=CSRERR=0 (if no errors)
Z=0, A=CSRERR =1 (if a checksum error occurs)
Z=0, A=CSRERR=2 (if a memory error occurs)

BLKOUT =[$A008]
Writes a block to cassette.
Entry Conditions:
If this is the first block write after turning the motor on, the tape should be up to speed
and a $55s should be written first.
CBUFAD, located at $7E, contains the buffer address.
BLKTYP, located at $7C, contains the block type.
BLKLEN, located at $7D, contains the number of bytes.
Exit Conditions:
Interrupts are masked.
X=CBUFAD +BLKLEN.
All registers are modified.

89

F/ ROM ROUTINES

CHROUT = [A002]
Outputs a character to a device.
Entry Conditions:
Register A = character to be output
Address 6F (DEVNUM) = the device (-2 = printer; 0 = screen)
Exit Conditions:
Register CC is changed; all others are preserved.

CSRDON = [$A004]
Starts the cassette and gets into bit sync for reading.
Entry Conditions:
None
Exit Conditions:
FIRQ and IRO are masked.
Registers U and Y are preserved. All others are modified.

JOYIN = [$AO0A]

Samples the four joystick pots and stores their values in POTVAL through POTVAL +3.
Left Joystick:

Up/Down 15A
Right/Left 15B
Right Joystick:

Up/Down 15C
Right/Left 15D

For Up/Down, the minimum value equals Up.
For Right/Left, the minimum value equals Left.

POLCAT = [A000]
Polls the keyboard for a character.
Entry Conditions:
None
Exit Conditions:
If no key is seen — Flag Z = 1, Register A = 0
If a key is seen — Flag Z = 0, Register A = key code
Registers B and X are preserved.
All other registers are modified.

90

EDIASM

Reference G/
DOS Disk Data Control Block (DCB)

DOS uses a 49-byte DCB to access a disk file. This reference shows the contents of each of
the bytes (Bytes 0-48) in the DCB.

Bytes 0-31

The first 32 bytes of the DCB correspond to the disk file’s 32-byte directory entry. When
creating a file, DOS writes the DCB's first 32 bytes to the directory.

When opening an existing file, DOS searches each directory entry for the filename and exten-
sion you have set in the DCB. If it finds a match, it overwrites the first 32 bytes of the DCB with
the 32-byte directory entry.

When you close the file, DOS overwrites the directory entry with the first 32 bytes of the DCB.

Filename (DCBFNM) Bytes 0-7
Contains the name of the file you want to access. You must set this value.

Extension (DCBFNM) Bytes 8-10
Contains the extension of the file you want to access. You must set this value.

File Type (DCBFTY) Byte 11
Contains the type of file you want to access. DOS ignores this, but BASIC uses it. You need to
set this value when creating the file if you want the file compatible with BASIC.

ASCII Flag (DCBASC) Byte 12
Contains a flag if the file is in ASCIl format. DOS ignores this, but BASIC uses it. You need to
set this value when creating the file if you want the file compatible with BASIC.

First Cluster (DCBFCL) Byte 13
Contains the number of the first cluster in the file. (When you first create a file, this contains
$FF.) DOS sets this value..Do not change it.

First Sector Bytes (DCBNLS) Bytes 14-15
Contains the number of bytes used in the first sector of the file. DOS ignores this. However, to
be compatible with BASIC files, you should set this value before closing an output file.

File Mode (DCBCFS) Byte 16
Contains the mode you specified with Register A in the OPEN, WRITE, or READ routine. DOS
sets this value.

91

G/ D0OS DATA CONTROL BLOCK (DCB)

Record Size (DCBRS2) Bytes 17-18
Contains the size of each record. Use this with fixed-length records only. You set this value
before reading from or writing to a direct access file.

Record Terminator (DCBTRM) Byte 19
Contains the character that DOS uses to terminate each record. You supply this value when
reading from or writing to a sequential access file.

Undefined (DCBUSR) Bytes 20-31
Contains nothing at present. In future releases, DOS may use part of this.

Bytes 32 - 48

Bytes 32-48 are primarily set by DOS. However, you may use the contents of these bytes as
data in your program.

The exceptions to this are the bytes for the drive number, physical buffer address, and logical
buffer address. You must set the contents of these bytes before opening a file.

Operation Code (DCBOPC) Byte 32
Contains the last physical I/O operation performed on the file. See your Disk System Manual
for details. DOS sets this value.

Drive Number (DCBDRYV) Byte 33
Contains the drive number (0-3 or $FF). $FF telis DOS to use the first available drive and then
insert the drive number in this segment. You must set this value before opening a file.

Track Number (DCBTRK) Byte 34

Contains the number of the last track DOS accessed while doing I/0 for this file. DOS sets this
value.

Sector Number (DCBSEC) Byte 35

Contains the number of the last sector DOS accessed while doing I/O for this file. DOS sets
this value.

Physical Buffer Address (DCBBUF) Bytes 36-37

Contains the start address of a 256-byte physical buffer. The physical buffer is for storing data
before or after disk /0. You must set this value before opening a file.

Error Code (DCBOK) Byte 38
Contains the same value that the DOS routine returns in Register A: a zero if the last DOS
routine was successful; the error number if there was an error. DOS sets this value.

Logical Buffer Address (DCBLRN) Bytes 39-40
Contains the start address of a logical buffer. The logical buffer is for storing a logical record
before or after it goes through the physical buffer. You must set this value before opening a
file, unless you have specified the “share” file mode. (See OPEN.)

Physical Record Number (DCBPRN). Bytes 41-42

Contains the number of the physical record currently in the physical buffer. DOS uses this to
determine whether another physical read or write is required. This contains $FFFF when the
file is opened. It also contains $FFFF after every read or write when the buffer is “shared.”
DOS sets this value.

92

EDIASM

Relative Byte Address (DCBRBA) Bytes 43-45

Contains an address which points to the record you want to read or write (zero when the file is
first opened). With sequential access, this address always points to the next record. With direct
access, this address is the product of DCBRSZ times DCBPRN. DOS sets and updates this
value.

Logical Record Number (DCBLRN). Bytes 46-47
Contains the number of the next record to be accessed (zero when the file is first opened).
Unless you set this value, DOS increments it after accessing each record.

Modified Data Tag (DCBMDT) Byte 48

Contains a tag (“1”) if the contents of the physical buffer need to be written to disk. DOS sets
this tag each time it writes to the logical buffer. The contents of the physical buffer are written
to disk only when DOS must access a different sector (because the 256-byte buffer is full) or
close the file. If the physical buffer is “shared,” the physical buffer is written to disk after each
logical write. DOS sets and updates this value.

93

EJIASM

Reference H/
DOS Routines

This reference lists all the DOS routines that Radio Shack will continue to provide in future releases. Please note that
Radio Shack will support only the OPEN, CLOSE, READ, and WRITE routines. The other routines listed in this refer-
ence will be provided, but not necessarily supported.

Definition of Terms

root program
The portion of the program that is not an overlay. if you are not using overlays, this is the entire program.

overlay
A portion of the program that DOS loads into memory only when called. This can be your own overlay (called with
DOUSR, GOUSR, or LOUSR) or a DOS overlay (called with DO, GO, or LOAD).

DOS programming convention

A convention, which any program using DOS routines must follow:

® The execution address must be the first instruction in the program.

® The first three bytes of the program must contain a JMP or LBR to any part of the root program. (JMP and LBR are
both 3-byte instructions.) Example:

START JMP BEGIN

® The next two bytes must contain the length of the root program. If you are not using overlays, this is the entire
program. Example:

FDB DONE-START
® |f you are using overlays, this is the root program. Example:
FDB DONE-0OUY1

DOS overlay conventions
A convention, which any of your own overlays must follow:
® The first two bytes must contain the size of the overlay. Example:

ovY1 FDB ouY2-0uy1
® The next three bytes must contain a JMP or LBRA to any part of the overlay. Example:
JSR PROV1

® The last instruction should be an RTS, GO, or GOUSR.
® You must assign the overlay a number that is sequential. For example, assign your first overlay the overlay number
of 1:

ovy EQU 1

95

H/ DOS ROUTINES

e The overlay must be written with relocatable (rather than absolute) addresses. When DOS loads the overlay, it sets
Register X equal to the overlay’s base address. Therefore, you can refer to all the local variables as an offset to
Register X.

COMMANDS PAGES
DISCUSSED

CLOSE =[$602]
Closes access to a disk file.
Entry Conditions:
Register U = the address of the DCB that was previously opened.
Program must follow DOS programming convention.
Exit Conditions
Register A = status code
Technical Function of CLOSE:
® Checks the drive specified by DCBDRV for a directory entry matching DCBFNM and
DCBFEX. When the entry is found, checks to see if the file was previously open by seeing if
DCBCFS contains a non-zero vaiue.
e Checks DCBMDT for a modification tag. If found, writes the contents of the physical buffer to
the disk.
e Sets DCBCFS to zero.
e Rewrites the directory entry with the first 32 bytes of the DCB. Any changes in the first 32
bytes of the DCB after OPEN and before CLOSE are recorded in the directory.
e Rewrites the diskette’'s FAT.

DO = [$60A]
Calls a DOS overlay.
Entry Conditions:
Register A = DOS overlay number
Exit Conditions:
Register A = status code

DOUSR = [$0610]
Calls one of your own overlays.
Entry Conditions:
Register A = overlay number (the number you have assigned to the overlay)
Exit Conditions:
Register A = status code

GO = [$60C]
Calls one DOS overlay from another DOS overlay.
Entry Conditions:
Register A = DOS overlay number
Exit Conditions:
Register A = status code

GOUSR = [$612]
Calls one overlay from another overlay. For example, OVY1 calls OVY2,
Entry Conditions:
Register A = overlay number (the number you have assigned to the overlay)
Exit Conditions:
Register A = “0” if no error; error code if error

LOAD = [$60E]
Loads a DOS overlay but does not execute it.
Entry Conditions:
Register A = DOS overlay number
Exit Conditions:
Register A = “0” if no error; error code if error

LODUSR = [$614]
Loads one of your overlays but does not execute it.
Entry Conditions:
Register A = overlay number (the number you have assigned to the overlay)
Exit Conditions:
Register A = “0” if no error; error code if error

OPEN = [$600]
Opens access to a disk file using the specified file mode.
Entry Conditions:

Register A = file mode

The file modes are:

Bit 0 set — allows reads

Bit 1 set — allows writes

Bit 2 set — allows file creation

Bit 3 set — allows extension past end of file

Bit 4 set — deletes the file when closed (work file)

Bit 5 set — rewrites the directory’s file allocation table (FAT) only when the file is
closed. (Otherwise, rewrites FAT after each READ; see the Disk Sys-
tem Manual for information on the FAT.)

Bit 6 set — shares the physical and logical buffer

Bit 7 set — undefined

Register U = the address where the DCB is stored.
The DCB must contain values for DCBFNM, DCBFEX, DCBDRYV, and DCBBUF
Program must follow DOS programming conventions.
Exit Conditions:
Register A = 0 if no error; error code if error
Technical Function of OPEN:
® Checks the drive specified by DCBDRV for a directory entry matching DCBFNM and
DCBFEX.
e [f a match is found:
® Uses the directory entry to overwrite the first 32 bytes of the DCB
® Checks DCBCEFS. It indicates a write, create, or extend, the file is opened and Status
Code L is returned.
® Inserts the file mode (contained in Register A) in DCBCFS.
e Overwrites the directory entry with the first 32 bytes of the DCB.
o |f a match is not found and the file mode is “create,” creates a directory entry using the first
32 bytes of the DCB

97

H/DOS ROUTINES

® Sets DCBPRN to $FFFF
e Clears DCBLRN, DCBMDT, and DCBRBA.

READ = [$604]
Reads a record from a disk file.
Entry Conditions
Register A = read option
The read options are:
Bit O clear — direct access (read by record number; fixed length records)
Bit 0 set — sequential access (read by terminator character; variable length re-
cords)
Bit 1 clear — exit READ pointing to next record
Bit 1 set — exit READ leaving DCBLRN and DCBRBA the same (not pointing to
next record)
The other bits can contain any value.
Register U = address pointing to the DCB
Program must follow DOS programming convention
Exit Conditions:
Register A = 0 if no error; error number if error logical buffer (pointed to by DCBLRB)
contains the record
Technical Function of READ:
® Checks DCBCFS to see if the file was opened for “read.”
e Checks DCBRBA for the record you want to access. (If Bit O in Register A is clear, READ
calculates DCBRBA as the product of DCBLRN times DCBRSZ).
® Checks to see if the record is in the physical buffer (by comparing the high two bytes of
DCBRBA with the contents of DCBPRN).
If the record is not in the physical buffer, READ reads the record into the physical buffer
then transfers it to the logical buffer.
e Checks to see if Register A's Bit 1 is set. If so, restore DCBLRN and DCBRBA to their
original values.

RELSE = [$608]
Frees a physical buffer so that you can use it with another file.
Entry Conditions:
Register U = address where the DCB is stored of the file currently using the physical
buffer.
Register A = 0 if no error; error code if error.
Technical Function of RELSE:
e Check DCBMDT. If the tag is set, the contents of the physical buffer are written to disk and
DCBMDT is cleared.
¢ Sets DCBPRN to $FFFF.

WRITE = [$606]
Writes a logical record to disk.
Entry Conditions:
Register A = read/write option

The read/write options are:

Bit O clear — direct access (write by record number; fixed length records)

Bit 0 set — sequential access (write by terminator character; variable length

records)

Bit 1 clear — exit READ pointing to next record
Bit 1 set — exit READ leaving DCBLRN and DCBRBA the same (not pointing to
next record)

The other bits can contain any value.

Register U = address pointing to the DCB logical buffer (pointed to by DCBLRB) con-

tains the record you want to write
Program must follow DOS programming conventions.
Exit Conditions:

Register A = 0 if no error; status code if error

Technical Function of WRITE:

® Checks DCBCFS to see if the file was opened for “write.”

e Checks DCBRBA for the record you want to access. (If Bit 0 in Register A is off, WRITE
calculates DCBRBA as the product of DCBLRN times DCBRSZ).

e Transfers the contents of the logical buffer to the physical buffer. If all 256 bytes of the
physical buffer are full, writes the contents of the physical buffer to disk. If there is still more
contents in the logical buffer, WRITE transfer these contents to the physical buffer and sets
DCBMDT to 1.

o [f the file mode is “share,” writes the complete contents of the physical buffer to disk regard-
less of whether it completely fills the sector. Then, sets DCBPRN to $FFFF.

EDTASM

Error
Code
00
01
02
03
04
05
06
07
08
09
0A
0B
oc
oD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

Hex

Code
40
41
42
43
44
45
46
47
48
49
4A
4B
ac
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

Reference I/
DOS Error Codes

Character
Displayed
@

Y N XSE<CHOIOITOZErRe—IOTMMOO®Y>

|

Error

No errors

I/O error (drive not ready)

I/O error (write-protected diskette)

/O error (write fault)

1/0O error (seek error or record not found)
I/O error (CER error)

/O error (lost data)

I/O error (undefined Bit 1)

I/O error (undefined Bit 0)

Register argument is invalid

File directory entry not found

Full directory

File was created by the OPEN function
File not closed after changes

Attempt to access an opened file

Attempt to read a read-protected file

RBA overflow (exceeds 3 bytes -16,777,216)
Access beyond EOF or extension not allowed
FAT rewrite error

Attempt to close an unopened file

Can't access directly (record size is 0)
Attempt to write on write-protected diskette
Can't extend file (disk capacity exceeded)
Error while loading overlay

Insufficient print space allocated

I/O error during BASIC line read
Program’s load address is too low

First byte of program file is not equal to zero
Not enough space for buffered keyboard
Not enough memory

Output file already exists

Wrong diskette

101

$0 - $69
$70-$FF
$100-§111
$112-$119
$11A
$11B-$159
$15A-$15D
$15E-$3FF
$400-$5FF
$600-$11FF
$1200-$3FFF
$1200-$7FFF
$8000-$9FFF
$A000-$BFFF
$C000-$DFFF
$E000-$FEFF
$FF00-$FFEE
$FFFO-$FFFF

Reference J/
Memory Map

Direct page RAM
System direct page RAM
Interrupt vectors

System RAM

Keyboard alpha lock flag
System RAM

Joystick pot values
System RAM

Video memory

DOS

16K user memory

32K user memory
Extended BASIC

BASIC

Disk BASIC

ROM expansion
Hardware address
Interrupt vectors

103

EDIASM

Reference K/
ASCII Codes

Video Control Codes

8 08 Backspaces and erases current character.
13 0D Line feed with carriage return.
32 20 Space

Color Codes

Black
Green
Yellow
Blue
Red

Buff
Cyan
Magenta
Orange

oO~NONBHhWN-=-O

Graphic Character
Codes

Given the color (1-8) and the pattern (0-15), this formula
will generate the correct code:

code = 128 + 16 * (color — 1) + pattern

0 1[__[ZL SU 4[] 5[]
6 7[:] BE ngﬁD
12 13[] 14D 15[]

For example, to print pattern 9 in blue (code 3), type:

C =128 + 16 * (3-1) + 8
? CHR$ (C)

105

K/ ASCII CODES

Alphanumeric
Character Codes

DECIMAL HEXADECIMAL
CHARACTER CODE CODE

32 20
! 33 21
” 34 22

35 23
3 36 24
% 37 25
& 38 26

’ 39 27
(40 28
) 41 29
* 42 2A
+ 43 2B

, 44 2C
— 45 2D

. 46 2E
/ 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39

: 58 3A

; 59 3B
< 60 3C
= 61 3D
> 62 3E
? 63 3F
@ 64 40
A 65 41
B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48

| 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4E
(o] 79 4F
P 80 50
Q 81 51
R 82 52
S 83 53

106

EJTASM

DECIMAL HEXADECIMAL
CHARACTER CODE CODE

T 84 54
U 85 55
v 86 56
w 87 57
X 88 58
Y 89 59
Y4 90 5A
M 94 5E
@+ 10 0A
* 8 08
=" 9 09
(BREAK) 03 03
12 0oC
ENTER 13 ob

*If shifted, the code for these characters are as follows:
is 92 (hex 5C); (D) is 95 (hex 5F); (D is 91 (hex
5B); (= is 21 (hex 15); and is 93 (hex 5D).

These are the ASCII codes for lowercase letters. You can
produce these characters by pressing simul-
taneously to getinto an upper-lowercase mode. The lower-
case letters will appear on your screen in reversed colors
(green with a black background).

DECIMAL | HEXADECIMAL
CHARACTER T e

a 97 61
b 98 62
c 99 63
d 100 64
e 101 65
f 102 66
g 103 67
h 104 68
i 105 69
i 106 6A
k 107 6B
[108 6C
m 109 6D
n 110 6E
o 111 6F
P 112 70
q 113 71
r 114 72
[115 73
t 116 74
u 117 75
v 118 76
w 119 77
X 120 78
y 121 79
z 122 7A

107

Reference L/
6809 Mnhemonics

Definition of Terms

Source Forms:

This shows all the possible variations you can use with
the instruction. Table 4 gives the meaning of all the nota-
tions we use. The notations in italics represent values
you can supply.

For example, the BEQ instruction has two source forms.
BEQ dd allows you to use these instructions:
BEO 308 BEQD $FF BEQ $AQ

Whereas LBEQ DDDD allows you these:
LBEQ $Co00 LBEQ $FFFF

Operation:

This uses shorthand notation to show exactly what the
instruction does, step by step. The meaning of all the
codes are also in Table 4.

For example, the BEQ operation does this:

“If, (but only if), the zero flag is set, branch to
the location indicated by the program counter
plus the value of the 8-bit offset.”

Condition Codes:

This shows which of the flags in the CC register are
affected by the instruction, if any. As you’'ll note, BEQ
does not set or clear any of the flags.

Description:
This is an overall description, in English, of what the
instruction does.

Addressing Mode:

This tells you which addressing modes you may use with
the instruction. BEQ allows only the Relative addressing
mode.

109

L/ 6809 MNEMONICS

RBBREVIATION | WEANNG

ABBREVIATION | MEANING |

ACCAorA Accumulator A. UsorU User stack pointer.
ACCBorB Accumulator B. P A memory location with immediate,
ACCA:ACCB or D Accumulator D. direct, extended, and indexed
ACCX Either accumulator A or addressing modes.
accumulator B. Q A read-write-modify argument with
CCRorCC Condition code register. direct, extended and indexed
DPR or DP Direct page register. addressing modes.
EA Effective address. Q) The data pointed to by the enclosed
IFF If and only if. (16 bit address).
IX or X Index register X. ad 8-bit branch offset.
IYorY Index register Y. DDDD 16-bit offset.
LSN Least significant nibble. # Immediate value follows.
M Memory location. $ Hexadecimal value follows.
M| Memory immediate. [] Indirection.
MSN Most significant nibble. , indicates indexed addressing.
PC Program counter. “ Is transferred to.
R A register before the operation. / Boolean AND.
R A register after the operation. Vv Boolean OR.
TEMP A temporary storage location. 0 Boolean Exclusive OR (XOR).
xxH Most significant byte of any — Boolean NOT.
location. : Concatination.
xxL Least significant byte of any + Arithmetic plus.
location. - Arithmetic minus.
SporS Hardware stack pointer. X Arithmetic multiply.

Table 4. Notations and Codes

110

EDASM

Add Accumulator B
into Index Register X

Source Form: ABX
Operation: IX'—IX+ACCB

Condition Codes: Not affected.

Description: Add the 8-bit unsigned value in accumulator B
into index register X. .

Addressing Mode: inherent.

Add with Carry into Register

Source Forms: ADCA P, ADCB P

Operation: R'-R+M+C

Condition Codes:
H —Set if a half-carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.
C —Set if a carry is generated; cleared otherwise.
Description: Adds the contents of the C (carry) bit and the
memory byte into an 8-bit accumulator.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Add Memory into Register

Source Forms: ADDA P, ADDB P
Operation: R'—R+M
Condition Codes:

H — Set if a half-carry is generated; cleared otherwise.

N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.
C —Set if a carry is generated; cleared otherwise.
Description: Adds the memory byte into an 8-bit
accumulator.
Addressing Modes: Immediate; Extended; Direct; indexed.

Add Memory into Register

Source Form: ADDD P

Operation: R'—R+M:M +1

Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V —Set if an overflow is generated; cleared otherwise.
C —Setif a carry is generated; cleared otherwise.
Description: Adds the 16-bit memory value into the 16-bit
accumulator.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Logical AND Memory
into Register

Source Forms: ANDA P; ANDB P
Operation: R'«-RAM
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V —Always cleared.

C — Not affected.
Description: Performs the logical AND operation between
the contents of an accumulator and the contents of memory
location M and the result is stored in the accumulator.
Addressing Modes: Immediate; Extended; Direct; indexed.

Logical AND Immediate Memory
into Condition Code Register

Source Form: ANDCC #xx
Operation: R'R A Ml
Condition Codes: Affected according to the operation.

Description: Performs a logical AND between the condition
code register and the immediate byte specified in the
instruction and places the result in the condition code
register.

Addressing Mode: Immediate.

Arithmetic Shift Left
Source Forms: ASL Q; ASLA; ASLB

operation: C-[| [| [[[[|0
b7 - b0
Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V — Loaded with the resuit of the exclusive OR of bits

six and seven of the original operand.

C —Loaded with bit seven of the original operand.
Description: Shifts all bits of the operand one place to the
left. Bit zero is loaded with a zero. Bit seven is shifted into
the C (carry) bit.

Addressing Modes: Inherent; Extended; Direct; Indexed.

AB X

ADC

AND

ASL

111

L/ 6809 MNEMONICS

ABRK

BCC

BCS

BEQ

BGE

BGT

BHI

Arithmetic Shift Right

Source Forms: ASR Q; ASRA; ASRB

overstor: | T T T T T T o
b7 b0

Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the original operand.
Description: Shifts all bits of the operand one place to the
right. Bit seven is held constant. Bit zero is shifted into the
C (carry) bit.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Branch on Carry Clear

Source Forms: BCC dd; LBCC DDDD
Operation:

TEMP~M!

IFF C=0 then PC'~PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a
branch if it is clear.

Addressing Mode: Relative.

Comments: Equivalent to BHS dd; LBHS DDDD.

Branch on Carry Set

Source Forms: BCS dd; LBCS DDDD
Operation:

TEMP~MI

IFF C=1 then PC'—~PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a
branchif it is set.

Addressing Mode: Relative.

Comments: Equivalent to BLO dd; LBLO DDDD.

Branch on Equal

Source Forms: BEQ dd; LBEQ DDDD
Operation:

TEMP—M|

IFF Z=1 then PC'—PC + TEMP
Condition Codes: Not affected.

Description: Tests the state of the Z (zero) bit and causes a
branch if it is set. When used after a subtract or compare
operation, this instruction will branch if the compared values,
signed or unsigned, were exactly the same.

Addressing Mode: Relative.

Branch on Greater than
or Equal to Zero

Source Forms: BGE dd; LBGE DDDD
Operation:

TEMP—MI

IFF [N @ V1=0 then PC'—~PC + TEMP
Condition Codes: Not affected.

Description: Causes a branch if the N (negative) bit and the
V (overtiow) bit are either both set or both clear. That is,
branch if the sign of a valid twos complement result is, or
would be, positive. When used after a subtract or compare
operation on twos complement values, this instruction will
branch if the register was greater than or equal to the
memory operand.

Addressing Mode: Relative.

Branch on Greater
Source Forms: BGT dd; LBGT DDDD
Operation:

TEMP~MI

IFF Z A IN @ V1=0 then PC'PC + TEMP
Condition Codes: Not affected.
Description: Causes a branch if the N (negative) bit and
V (overflow) bit are either both set or both clear and the

Z (zero) bit is clear. In other words, branch if the sign of a
valid twos complement result is, or would be, positive and
not zero. When used after a subtract or compare operation
on twos complement values, this instruction will branch if the
register was greater than the memory operand.

Addressing Mode: Relative.

Branch if Higher

Source Forms: BH! dd; LBHI DDDD
Operation:
TEMP«MI
IFF [C v Z1=0 then PC'—PC + TEMP
Condition Codes: Not affected.
Description: Causes a branch if the previous operation
caused neither a carry nor a zero result. When used after a

subtract or compare operation on unsigned binary values,
this instruction will branch if the register was higher than the
memory operand.

Addressing Mode: Relative.

Comments: Generally not useful after INC/DEC, LD/TST,
and TST/CLLR/COM instructions.

112

EDUASM

Branch if Higher or Same

Source Forms: BHS dd; LBHS DDDD
Operation:
TEMP-MI
IFF C=0 then PC’'—PC +MI
Condition Codes: Not affected.
Description: Tests the state of the C (carry) bit and causes a
branch if it is clear. When used after a subtract or compare

on unsigned binary values, this instruction wili branch if the
register was higher than or the same as the memory
operand.

Addressing Mode: Relative.

Comments: This is a duplicate assembly-language
mnemonic for the single machine instruction BCC. Generally
not useful after INC/DEC, LD/ST, and TST/CLR/COM
instructions.

Bit Test

Source Form: BIT P

Operation: TEMP—~R A M

Condition Codes:
H — Not affected.
N —Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V —Always cleared.

C — Not affected.
Description: Performs the logica! AND of the contents of
accumulator A or B and the contents of memory location M
and modifies the condition codes accordingly. The contents
of accumulator A or B and memory location M are not
affected.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Branch on Less than
or Equal to Zero

Source Forms: BLE dd; LBLE DDDD
Operation:

TEMP~M|

IFF Z v IN & Vi=1 then PC'—~PC+ TEMP
Condition Codes: Not affected.

Description: Causes a branch if the exclusive OR of the N
(negative) and V (overtiow) bits is 1 or if the Z (zero) bit is
set. That is, branch if the sign of a valid twos complement
result is, or would be, negative. When used after a subtract
or compare operation on twos complement values, this
instruction will branch if the register was less than or equal
to the memory operand.

Addressing Mode: Relative.

Branch on Lower

Source Forms: BLO dd: LBLO DDDD
Operation:
TEMP—M|
IFF C=1 then PC'~PC + TEMP
Condition Codes: Not affected.
Description: Tests the state of the C (carry) bit and causes a

branch if it is set. When used after a subtract or compare on
unsigned binary values, this instruction will branch if the
register was lower than the memory operand.

Addressing Mode: Relative.

Comments: This is a duplicate assembly-language
mnemonic for the single machine instruction BCS. Generally
not useful after INC/DEC, LD/ST, and TST/CLR/COM
instructions.

Branch on Lower or Same
Source Forms: BLS dd; LBLS DDDD
Operation:
TEMP«~MI
IFF (C v 2 =1 then PC'—PC + TEMP
Condition Codes: Not affected.
Description: Causes a branch if the previous operation

caused either a carry or a zero result. When used after a
subtract or compare operation on unsigned binary values,
this instruction will branch if the register was lower than or
the same as the memory operand.

Addressing Mode: Relative.

Comments: Generally not useful after INC/DEC, LD/ST, and
TST/CLR/COM instructions.

Branch on Less than Zero

Source Forms: BLT dd; LBLT DDDD
Operation:
TEMP-~M|
IFF [N & V1=1 then PC'—PC + TEMP
Condition Codes: Not affected.
Description: Causes a branch if either, but not both, of the

N (negative) or V (overtiow) bits is set. That is, branch if the
sign of a valid twos complement result is, or would be,
negative. When used after a subtract or compare operation
on twos complement binary values, this instruction will
branch if the register was less than the memory operand.
Addressing Mode: Relative.

Branch on Minus

Source Forms: BMI dd; LBMI DDDD
Operation:
TEMP-MI
IFF N=1 then PC'—~PC + TEMP
Condition Codes: Not affected.
Description: Tests the state of the N (negative) bit and

causes a branch if set. That is, branch if the sign of the twos
complement result is negative.

Addressing Mode: Relative.

Comments: When used after an operation on signed binary
values, this instruction will branch if the result is minus. It is
generally preferred to use the LBLT instruction after signed
operations.

BHS

BIT

BLE

BLO

BLS

BLT

BMI

113

L/ 6809 MNEMONICS

BNE

BPL

BRA

BRN

BSR

BUC

BUS

CLK

Branch Not Equal

Source Forms: BNE dd; LBNE DDDD
Operation:

TEMP—MI

IFF Z=0 then PC'—PC + TEMP
Condition Codes: Not affected.

Description: Tests the state of the Z (zero) bit and causes a
branch if it is clear. When used after a subtract or compare
operation on any binary vaiues, this instruction will branch

if the register is, or would be. not equal to the memory
operand.

Addressing Mode: Relative.

Branch on Plus

Source Forms: BPL dd; LBPL DDDD
Operation:
TEMP—MI
IFF N=0 then PC'—PC + TEMP
Condition Codes: Not affected.
Description: Tests the state of the N (negative) bit and

causes a branch if it is clear. That is, branch if the sign

of the twos complement result is positive.

Addressing Mode: Relative.

Comments: When used after an operation on signed binary
values, this instruction will branch if the result (possibly
invalid) is positive. It is generally preferred to use the BGE
instruction after signed operations.

Branch Always

Source Forms: BRA da; LBRA DDDD
Operation:

TEMP~MI

PC'—PC + TEMP

Condition Codes: Not affected.
Description: Causes an unconditional branch.
Addressing Mode: Relative.

Branch Never

Source Forms: BRN dd; LBRN DDDD
Operation: TEMP—MI
Condition Codes: Not affected.

Description: Does not cause a branch. This instruction is
essentially a no operation, but has a bit pattern logically
related to branch always.

Addressing Mode: Relative.

Branch to Subroutine

Source Forms: BSR dd; LBSR DDDD
Operation:
TEMP~MI
SP'«SP -1, (SP)-PCL
SP’'«SP -1, (SP)~PCH
PC'—PC+TEMP

Condition Codes: Not affected.

Description: The program counter is pushed onto the stack.
The program counter is then loaded with the sum of the
program counter and the offset.

Addressing Mode: Relative.

Comments: A return from subroutine (RTS) instruction is
used to reverse this process and must be the last instruction
executed in a subroutine.

Branch on Overflow Clear

Source Forms: BVC dd; LBVC DDDD
Operation:

TEMP—MI

IFF V=0 then PC'~PC + TEMP
Condition Codes: Not affected.

Description: Tests the state of the V (overflow) bit and
causes a branch if it is clear. That is, branch if the twos
complement result was valid. When used after an operation
on twos complement binary values, this instruction will
branch if there was no overflow.

Addressing Mode: Relative.

BVS Branch on Overflow set

Source Forms: BVS dd; LBVS DDDD
Operation: Temp<—Mi IFF V=1 then PC'*—PC+ TEMP
Condition Codes: Not affected.

Description: Tests the state of V (overflow) bit and causes
a branch if it is set. That is, branch if twos complement
result was invalid. When used after an operation on twos
complement binary values, this instruction will branch if there
was an overflow.

Addressing Mode: Relative.

CLR Clear

Source Forms: CLR Q
Operation: TEMP=—M M=—00 (base 16)
Condition codes:

H — Not affected.

N — Always cleared.

Z — Always set.

V — Always cleared.

C — Always cleared.
Description: Accumulator A or B or memory location M is
loaded with 00000000. Note that the EA is read during this
operation.
Addressing Modes: Inherent, Extended, Direct, Indexed.

114

EDUASM

Compare Memory from Register

Source Forms: CMPA P; CMPB P

Operation: TEMP-R-M

Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.

C — Set if a borrow is generated; cleared otherwise.
Description: Compares the contents of memory location
to the contents of the specified register and sets the
appropriate condition codes. Neither memory location M nor
the specified register is modified. The carry flag represents a
borrow and is set to the inverse of the resulting binary carry.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Compare Memory from Register

Source Forms: CMPD P; CMPX P; CMPY P; CMPU P,
CMPS P
Operation: TEMP-R-M:M +1
Condition Codes:
H — Not affected.
N — Set if the result is negative; cieared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.

C —Set if a borrow is generated; cleared otherwise.
Description: Compares the 16-bit contents of the
concatenated memory locations M:M + 1 to the contents
of the specified register and sets the appropriate condition
codes. Neither the memory locations nor the specified
register is modified unless autoincrement or autodecrement
are used. The carry flag represents a borrow and is set to
the inverse of the resulting binary carry.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Complement

Source Forms: COM Q; COMA; COMB
Operation: M'=0 +M
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Aiways set.

Description: Replaces the contents of memory location M
or accumulator A or B with its logical complement. When
operating on unsigned values, only BEQ and BNE branches
can be expected to behave properly following a COM
instruction. When operating on twos complement values,

all signed branches are available.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Clear CC bits and Wait
for Interrupt

Source Form; CWAI #3XX IEIFIHI | IN[Z]VM

Operation:
CCR+CCR A MI (Possibly clear masks)
Set E (entire state saved)
SP'«SP -1, (SP)—PCL
SP'—SP -1, (SP)—PCH
SP’—SP -1, (SP)-USL
SP'—SP -1, (SP)-USH
SP'«SP -1, (SP)-IYL
SP'«SP -1, (SP)-IYH
SP'—SP -1, (SP)IXL
SP'—SP -1, (SP)-IXH
SP'—SP -1, (SP)-DPR
SP'«-SP -1, (SP)-ACCB
SP'—SP -1, (SP)-ACCA
SP'—SP -1, (SP)-CCR
Condition Codes: Affected according to the operation.

Description: This instruction ANDs an immediate byte with
the condition code register which may clear the interrupt
mask bits | and F, stacks the entire machine state on the
hardware stack and then looks for an interrupt. When a
non-masked interrupt occurs, no further machine state
information need be saved before vectoring to the interrupt
handling routine. This instruction replaced the MC6800 CLI
WAI sequence, but does not place the buses in a high-
impedance state. A FIRQ (fast interrupt request) may enter
its interrupt handler with its entire machine state saved. The
RTI (return from interrupt) instruction will automatically return
the entire machine state after testing the E (entire) bit of the
recovered condition code register.
Addressing Mode: Immediate.
Comments: The following immediate values will have the
following resuilts:

FF = enable neither

EF =enable IRQ

BF =enable FIRQ

AF = enable both

Decimal Addition Adjust

Source Form: DAA
Operation: ACCA’—ACCA + CF (MSN):CF(LSN)
where CF is a Correction Factor, as foliows: the CF for each
nibble (BCD) digit is determined separately, and is either
Bor0.
Least Significant Nibble
CFLSN)=6IFF 1)C=1
or 2) LSN>9
Most Significant Nibble
CFMSN)=8BIFF 1)C=1
or 2) MSN>9
or 3) MSN>8 and LSN>9
Condition Codes:
H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V —Undefined.

C —Set if a carry is generated or if the carry bit was set

before the operation; cleared otherwise.

Description: The sequence of a single-byte add instruction
on accumutator A (either ADDA or ADCA) and a following
decimal addition adjust instruction results in a BCD addition
with an appropriate carry bit. Both values to be added must
be in proper BCD form (each nibble such that: O=nibble=<9).
Multiple-precision addition must add the carry generated by
this decimal addition adust into the next higher digit during
the add operation (ADCA) immediately prior to the next
decimal addition adjust.
Addressing Mode: Inherent.

CMP
(B-B1it)

CMP
(16-Bit)

COM

CHAT

DAA

115

L/ 6809 MNEMONICS

D E C Decrement

Source Forms: DEC Q; DECA; DECB
Operation: M'-M -1
Condition Codes:
H - Not affected.
N —Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared ctherwise.
V —Set if the original operand was 10000000; cleared
otherwise.

C —Not affected.
Description: Subtract one from the operand. The carry bit
is not affected, thus allowing this instruction to be used as
a loop counter in multiple-precision computations. When
operating on unsigned values, only BEQ and BNE branches
can be expected to behave consistently. When operating on
twos complement values, all signed branches are available.
Addressing Modes: Inherent; Extended; Direct; Indexed.

EQR | Exclusive OR

Source Forms: EORA P; EORB P
Operation: R'"-R® M
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V — Always cleared.

C ——Not affected.
Description: The contents of memory location M is
exclusive ORed into an 8-bit register.
Addressing Modes: Immediate; Extended; Direct; Indexed.

E }(Exchange Registers

Source Form: EXG R71,R2
Operation: R1—R2
Condition Codes: Not affected (unless one of the registers
is the condition code register).
Description: Exchanges data between two designated
registers. Bits 3-0 of the postbyte define one register, while
bits 7-4 define the other, as follows:

0000=A:B 1000=A

0001 =X 1001=8B

0010=Y 1010=CCR
0011=US 1011 =DPR
0100=SP 1100 = Undefined
0101=PC 1101 = Undefined
0110=Undefined 1110 =Undefined
0111 = Undefined 1111 =Undefined

Only like size registers may be exchanged. (8-bit with
8-bit or 16-bit with 16-bit.)
Addressing Mode: Immediate.

I N C Increment

Source Forms: INC Q; INCA; INCB
Operation: M'«M +1
Condition Codes:
H — Not affected.
N —Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V —Set if the original operand was 01111111;
cleared otherwise.

C — Not affected.
Description: Adds to the operand. The carry bit is not
affected, thus allowing this instruction to be used as a loop
counter in multiple-precision computations. When operating
on unsigned values, only the BEQ and BNE branches can be
expected to behave consistently. When operating on twos
complement values, all signed branches are correctly
available.
Addressing Modes: Inherent; Extended; Direct; Indexed.

JMP | Jump

Source Form: JMP EA
Operation: PC’'—EA
Condition Codes: Not affected.

Description: Program control is transferred to the effective
address.
Addressing Modes: Extended:; Direct; Indexed.

JSR | Jump to Subroutine

Source Form: JSR EA
Operation:
SP'~8P -1, (SP)-PCL
SP'«-SP -1, (SP)—-PCH
PC'~EA

Condition Codes: Not affected.

Description: Program control is transferred to the effective
address after storing the retum address on the hardware
stack. A RTS instruction should be the last executed
instruction of the subroutine.

Addressing Modes: Extended; Direct; Indexed.

Operation: R'—M
Condition Codes:
H — Not affected.
N —Set if the loaded data is negative; cleared
otherwise.

L D Load Register from Memory
(B B i ‘t) Source Forms: LDA P; LDB P

Z —-Set if the loaded data is zero; cleared otherwise.

V — Always cleared.

C —Not affected.
Description: Loads the contents of memory location M into
the designated register.
Addressing Modes: Immediate; Extended; Direct; indexed.

116

EDVASM

Load Register from Memory

Source Forms: LDD P; LDX P; LDY P; LDS P, LDU P
Operation: R'-M:M + 1

Condition Codes:
H —Not affected.
N — Set if the loaded data is negative; cleared
otherwise.

Z — Set if the loaded data is zero; cleared otherwise.
V — Always cleared.
C —Not affected.
Description: Load the contents of the memory location
M:M + 1 into the designated 16-bit register.
Addressing Modes: Immediate; Extended; Direct; Indexed.

LD
(16-Bit)

Load Effective Address

Source Forms: LEAX, LEAY, LEAS, LEAU
Operation: R'—EA
Condition Codes:

H — Not affected.

N —Not affected.

Z —LEAX, LEAY: Set if the result is zero; cleared

otherwise. LEAS, LEAU: Not affected.

V — Not affected.

C —Not affected..
Description: Calculates the effective address from the index
addressing mode and places the address in an indexable
register.
LEAX and LEAY affect the Z (zero) bit to allow use of
these registers as counters and for MC6800 INX/DEX
compatibility.
LEAU and LEAS do not affect the Z bit to allow cleaning up
the stack while returning the Z bit as a parameter to a calling

routine, and also for MC6800 INS/DES compatibility.
Addressing Mode: Indexed.

Comments: Due to the order in which effective addresses
are calculated internally, the LEAX, X+ + and LEAX,X+ do
not add 2 and 1 (respectively) to the X register; but instead
leave the X register unchanged. This also applies to the

Y, U, and S registers. For the expected results, use the
faster instruction LEAX 2, X and LEAX 1, X.

Some examples of LEA instruction uses are given in the
following tabie.

Instruction Operation Comment
LEAX 10, X X+10-X Adds 5-bit constant 10 to X.
LEAX 500, X X+500-+X Adds 16-bit constant 500 to X.
LEAY A Y Y+A-Y Adds 8-bit accumulator to Y.
LEAY D,Y Y+D~Y Adds 16-bit D accumulator to Y.
LEAU -10,U U-10-U Subtracts 10 from U.
LEAS -10,S S-10-S Used to reserve area on stack.
LEAS 10,S S+10-S Used to ‘clean up’ stack
LEAX 58S S+5-X Transfers as well as adds.

LEA

Logical Shift Left

Source Forms: LSL Q; LSLA; LSLB

Operation: C—[| | [[[T [[J-o

b7 b0
Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V —Loaded with the result of the exclusive OR of bits

six and seven of the original operand.

C — Loaded with bit seven of the original operand.
Description: Shifts all bits of accumulator A or B or memory
location M one place to the left. Bit zero is loaded with a
zero. Bit seven of accumulator A or B or memory location M
is shifted into the C (carry) bit.

Addressing Modes: Inherent; Extended; Direct; indexed.
Comments: This is a duplicate assembly-language
mnemonic for the single machine instruction ASL.

LSL

LSRK

Logical Shift Right N — Always cleared.
Source Forme: LSR Q; LSRA: LSRB Z —Set if the result is zero; cleared otherwise.
V —Not affected.
Operation: o~ [[| [[[T J-c C — Loaded with bit zero of the original operand.
b7 b0 Description: Performs a logical shift right on the operand.

Condition Codes: Shifts a zero into bit seven and bit zero into the C (carry) bit.

H — Not affected. Addressing Modes: Inherent, Extended; Direct; Indexed.
MUItlply C —Set if ACCB bit 7 of result is set; cleared otherwise.

Source Form: MUL
Operation: ACCA’:ACCB’'~ACCA x ACCB

Condition Codes:
H — Not affected.
N — Not affected.

Z —Set if the result is zero; cleared otherwise.
V —Not affected.

Description: Multiply the unsigned binary numbers in the
accumulators and place the result in both accumulators
(ACCA contains the most-significant byte of the result).
Unsigned multiply allows multiple-precision operations.
Addressing Mode: Inherent.

Comments: The C {(carry) bit allows rounding the most-
significant byte through the sequence: MUL, ADCA #0.

MUL

117

L/ 6809 MNEMONICS

NEG

NOP

OR

OR

PSHS

PSHU

Negate

Source Forms: NEG Q; NEGA; NEGB
Operation: M'~0-M
Condition Codes:
H —Undefined.
N —Set if the result is negative; cleared otherwise.
Z —-Set if the result is zero; cleared otherwise.
V —Set if the original operand was 10000000.

C —Set if a borrow is generated; cleared otherwise.
Description: Replaces the operand with its twos
complement. The C (carry) bit represents a borrow and is set
to the inverse of the resulting binary carry. Note that 80,4 is
replaced by itself and only in this case is the V (overflow) bit
set. The value 00,4 is also replaced by itself, and only in this
case is the C (carry) bit cleared.

Addressing Modes: Inherent; Extended; Direct.

No Operation

Source Form: NOP
Operation: Not affected.

Condition Codes: This instruction causes only the program
counter to be incremented. No other registers or memory
locations are affected.

Addressing Mode: inherent.

Inclusive OR Memory
into Register

Source Forms: ORA P, ORB P
Operation: R'~RvM
Condition Codes:
H — Not affected.
N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.
Description: Performs an inclusive OR operation between
the contents of accumulator A or B and the contents of
memory location M and the result is stored in accumulator
AorB.
Addressing Modes: Immediate; Extended; Direct; indexed.

Inclusive OR Memor&lmmediate
into Condition Code Register

Source Form: ORCC #XX
Operation: R'~R v M|
Condition Codes: Affected according to the operation.

Description: Performs an inclusive OR operation between
the contents of the condition code registers and the
immediate value, and the result is placed in the condition
code register. This instruction may be used to set interrupt
masks (disable interrupts) or any other bit(s).

Addressing Mode: Immediate.

Push Registers on
the Hardware Stack

Source Form:
PSHS register list
PSHS #LABEL
Postbyte:
b7 b6 bS5 b4 b3 b2 b1 b0

[rcJulyxJor]B]ATJcc]
push order —

Operation:
IFF b7 of postbyte set, then: SP'«SP -1, (SP)-PCL
SP'—SP -1, (SP)~PCH
IFF b6 of postbyte set, then: SP'~SP -1, (SP)-USL
SP'«SP -1, (SP)~USH

IFF b5 of postbyte set, then: SP'—SP — 1, (SP)~IYL
SP'—SP -1, (SP)-IYH
IFF b4 of postbyte set, then: SP'SP - 1, (SP)IXL
SP'—SP -1, (SP)-IXH
IFF b3 of postbyte set, then: SP'—SP -1, (SP)-DPR
IFF b2 of postbyte set, then: SP'—SP -1, (SP)-ACCB
IFF b1 of postbyte set, then: SP'«SP - 1, (SP)-ACCA
IFF bO of postbyte set, then: SP’'~SP -1, (SP)-CCR
Condition Codes: Not affected.
Description: All, some, or none of the processor registers
are pushed onto the hardware stack (with the exception of
the hardware stack pointer itself).
Addressing Mode: Immediate.
Comments: A single register may be placed on the stack
with the condition codes set by doing an autodecrement
store onto the stack (example: STX, — - S).

Push Registers on
the User Stack

Source Form:
PSHU register list
PSHU #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b0

[prcfufy[x]or]B 1Al cc|
push order —

Operation:
IFF b7 of postbyte set, then; US’~US -1, (US)—-PCL
US'~US - 1, (US)-PCH
IFF b6 of postbyte set, then: US'~US - 1, (US)-SPL
US'~US -1, (US)-SPH

|IFF b5 of postbyte set, then: US'«US -1, (US)«—IYL
US'<US -1, (US)—IYH

IFF b4 of postbyte set, then: US’—US — 1, (US)—IXL
US'<US - 1, (US)—iXH

IFF b3 of postbyte set, then: US’~US - 1, (US)-DPR

IFF b2 of postbyte set, then:
IFF b1 of postbyte set, then:
IFF b0 of postbyte set, then:

Us’~US -1, (US)-ACCB
US'—US -1, (US)-ACCA
US’'«US -1, (US)-CCR

Condition Codes: Not affected.

Description: All, some, or none of the processor registers
are pushed onto the user stack (with the exception of the
user stack pointer itself).

Addressing Mode: Immediate.

Comments: A single register may be placed on the stack
with the condition codes set by doing an autodecrement
store onto the stack (example: STX, — —U).

118

_EDTASM

Pull Registers from
the Hardware Stack

Source Form:
PULS register list
PULS #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b0

[rclulyTx]or] BT A Jcc]
« pull order

Operation:
IFF bO of postbyte set, then: CCR’ ~(SP), SP'<SP + 1
IFF bt of postbyte set, then. ACCA'—(SP), SP'<SP + 1
IFF b2 of postbyte set, then: ACCB'+—(SP), SP'—SP + 1
IFF b3 of postbyte set, then: DPR’ ~(SP), SP'<SP + 1
IFF b4 of postbyte set, then: IXH' «~(SP), SP'<SP + 1
IXL' «~(SP), SP'~SP+1

IFF b5 of postbyte set, then: IYH' «—(SP), SP'«SP + 1
IYL' «(SP), SP'«SP+1
IFF b6 of postbyte set, then: USH’ —(SP), SP'«<SP +1
USL' «~(SP), SP’—SP +1
IFF b7 of postbyte set, then: PCH’ —(SP), SP'—SP + 1
PCL' ~(SP), SP'«SP +1
Condition Codes: May be pulled from stack; not affected
otherwise.
Description: All, some, or none of the processor registers
are pulled from the hardware stack (with the exception of the
hardware stack pointer itself).
Addressing Mode: Immediate.
Comments: A single register may be puiled from the stack
with condition codes set by doing an autoincrement load
from the stack (example; LDX,S+ +).

PULS

Pull Registers from
the User Stack

Source Form:
PULU register list
PULU #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b0

frc[u]y[x]Jor[B]A]cc]
« pull order

Operation:
IFF b0 of postbyte set, then: CCR’ —(US), US'—US + 1
{FF b1 of postbyte set, then: ACCA’—(US), US'~US + 1
IFF b2 of postbyte set, then: ACCB'~(US), US'—US + 1
IFF b3 of postbyte set, then: DPR’ ~(US), US’«—US +1
IFF b4 of postbyte set, then: IXH' «(US), US'+-US +1
IXL' «~(US), US'«US +1

IFF b5 of postbyte set, then: IYH' «—(US), US'~US +1
YL ~(US), US'-US+1
IFF b6 of postbyte set, then: SPH’ ~(US), US'<US+ 1
SPL’ «~(US), US'<US+1
IFF b7 of postbyte set, then: PCH «(US), US'—US +1
PCL' «~(US), US'~US+1
Condition Codes: May be pulled from stack; not affected
otherwise.
Description: All, some, or none of the processor registers
are pulled from the user stack (with the exception of the user
stack pointer itself).
Addressing Mode: Immediate.
Comments: A single register may be pulled from the stack
with condition codes set by doing an autoincrement load
from the stack (example: LDX,U + +).

PULU

Rotate Left

Source Forms: ROL Q; ROLA; ROLB

0peratlon:| _'E |
Ll [LT T T I*’

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits
six and seven of the original operand.

C — Loaded with bit seven of the original operand.

ROL

b7 - b0 Description: Rotates all bits of the operand one place left
Condition Codes: through the C (carry) bit. This is a 9-bit rotation.
H — Not affected. Addressing Mode: Inherent; Extended; Direct; Indexed.
Rotate Right

Source Forms: ROR Q; RORA; RORB

c]- |
LT }—]
b7 - b0

Condition Codes:
H — Not affected.

[
Operation: l

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the previous operand.
Description: Rotates all bits of the operand one place right
through the C (carry} bit. This is a 9-bit rotation.
Addressing Modes: Inherent; Extended; Direct; Indexed.

ROR

119

L/ 6809 MNEMONICS

RTI

RTS

5BC

SEX

5T
(8-Bit)

ST
(16-Bit)

SUB
(B-B1t)

Return from Interrupt

Source Form: RT!
Operation: CCR'—(SP), SP'—SP + 1, then
IFF CCR bit E is set, then: ACCA’'—(SP), SP'+SP +1
ACCB'—(SP), SP'«SP + 1
DPR’ ~(SP), SP'~SP+1
IXH' «(SP), SP'«~SP+1
IXL' «~(SP), SP'«SP+1
IYH' «(SP), SP'-SP+1
IYL'” «(SP), SP'-SP +1
USH’ «~(SP), SP'~SP +1
USL’ «(SP), SP'~SP +1

PCH' «~(SP), SP'«SP +1
PCL' «(SP), SP'«SP + 1
IFF CCR bit E is clear, then: PCH’ «~(SP), SP'~SP + 1

PCL’ «~(SP), SP'<SP +1
Condition Codes: Recovered from the stack.
Description: The saved machine state is recovered from the
hardware stack and control is returned to the interrupted
program. If the recovered E (entire) bit is clear, it indicates
that only a subset of the machine state was saved (return
address and condition codes) and only that subset is
recovered.
Addressing Mode: Inherent.

Return from Subroutine

Source Form: RTS
Operation:
PCH'~(SP), SP'~SP + 1
PCL'«(SP), SP'~SP + 1

Condition Codes: Not affected.

Description: Program control is returned from the
subroutine to the calling program. The return address
is pulled from the stack.

Addressing Mode: inherent.

Subtract with Borrow

Source Forms: SBCA P, SBCB P

Operation: R'<R-M-C

Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.

C —Set if a borrow is generated; cleared otherwise.
Description: Subtracts the contents of memory location M
and the borrow (in the C (carry) bit) from the contents of the
designated 8-bit register, and places the resuit in that
register. The C bit represents a borrow and is set to the
inverse of the resulting binary carry.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Sign Extended

Source Form: SEX
Operation:
If bit seven of ACCB is set then ACCA’«FF,¢
else ACCA'00,¢
Condition Codes:
H — Not affected.

N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero, cleared otherwise.

V —Not affected.

C — Not affected.
Description: This instruction transforms a twos complement
8-bit value in accumulator B into a twos complement 16-bit
value in the D accumulator.
Addressing Mode: Inherent.

Store Register into Memory

Source Forms: STA P, STB P
Operation: M'—R
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V — Always cleared.

C —Not affected.
Description: Writes the contents of an 8-bit register into a
memory location.
Addressing Modes: Extended; Direct; Indexed.

Store Register into Memory

Source Forms: STD P, STX P; STY P, STS P, STU P
Operation: MM+ 1'—R
Condition Codes:

H — Not affected.

N —Set if the result is negative; cleared otherwise.

Z —Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.
Description: Writes the contents of a 16-bit register into two
consecutive memory locations.
Addressing Modes: Extended; Direct; Indexed.

Subtract Memory from Register

Source Forms: SUBA P, SUBB P

Operation: R'~R-M

Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V —Set if the overflow is generated; cleared otherwise.
C —Set if a borrow is generated; cleared otherwise.
Description: Subtracts the value in memory location M from
the contents of a designated 8-bit register. The C (carry} bit
represents a borrow and is set to the inverse of the resulting
binary carry.
Addressing Modes: Immediate; Extended; Direct; Indexed.

120

EDTASM

Subtract Memory from Register

Source Forms: SUBD P

Operation: R'~R-M:M+1

Condition Codes:
H — Not affected.
N —Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

V —Set if the overflow is generated; cleared otherwise.
C —Set if a borrow is generated; cleared otherwise.
Description: Subtracts the value in memory location
M:M + 1 from the contents of a designated 16-bit register.
The C (carry) bit represents a borrow and is set to the
inverse of the resulting binary carry.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Software Interrupt

Source Form: SWI

Operation:
Set E (entire state will be saved)
SP'-SP -1, (SP)~PCL
SP'—SP -1, (SP)-PCH
SP'—SP -1, (SP)-USL
SP'«-SP -1, (SP)-USH
SP'—SP -1, (SP)IYL
SP'—SP -1, (SP)-IYH
SP'~SP -1, (SP)IXL
SP'—8SP -1, (SP)IXH

SP'~SP -1, (SP)-DPR

SP'«—SP -1, (SP)--ACCB

SP'—SP -1, (SP)-ACCA

SP'~SP -1, (SP)-CCR

Set |, F (mask interrupts)

PC’ ~(FFFA).(FFFB)
Condition Codes: Not affected.
Description: All of the processor registers are pushed onto
the hardware stack (with the exception of the hardware stack
pointer itself), and control is transferred through the software
interrupt vector. Both the normal and fast interrupts are
masked (disabled).
Addressing Mode: Inherent.

Software Interrupt 2

Source Form: SWI2

Operation:
Set E (entire state saved)
SP'SP -1, (SP)-PCL
SP'~SP -1, (SP)-PCH
SP’+SP -1, (SP)-USL
SP'«SP -1, (SP)-USH
SP'«SP -1, (SP)-IYL
SP'-SP - 1, (SP)«-IYH
SP'+SP -1, (SP)IXL
SP'—SP -1, (SP)IXH

SP'«SP -1, (SP)-DPR

SP'~SP -1, (SP)-ACCB

SP'«~SP -1, (SP}-ACCA

SP'~SP -1, (SP)~CCR

PC’«—(FFF4).(FFF5)
Condition Codes: Not affected.
Description: All of the processor registers are pushed onto
the hardware stack (with the exception of the hardware stack
pointer itself), and control is transferred through the software
interrupt 2 vector. This interrupt is available to the end user
and must not be used in packaged software. This interrupt
does not mask (disable) the normal and fast interrupts.
Addressing Mode: inherent.

Software Interrupt 3

Source Form: SWI3

Operation;
Set E (entire state will be saved)
SP'«SP -1, (SP)—PCL
SP'«SP-1, (SP)~PCH
SP'«SP -1, (SP)-USL
SP'«SP -1, (SP)-USH
SP'SP -1, (SP)-IYL
SP'~SP -1, (SP)-IYH
SP'+8P -1, (SP)~IXL
SP'SP -1, (SP)~IXH

SP’~SP -1, (SP)-DPR

SP'—SP -1, (SP)--ACCB

SP’«SP - 1, (SP)-ACCA

SP'—SP -1, (SP)-CCR

PC’ —(FFF2):(FFF3)
Condition Codes: Not affected.
Description: All of the processor registers are pushed onto
the hardware stack (with the exception of the hardware stack
pointer itself), and control is transferred through the software
interrupt 3 vector. This interrupt does not mask (disable) the
normal and fast interrupts.
Addressing Mode: Inherent.

SuB
(16-Bit)

SWI

SWIZ

SWI3

121

L/ 6809 MNEMONICS

SYNC

TFR

TST

FIRQ

Synchronize to External Event

Source Form: SYNC

Operation: Stop processing instructions.

Condition Codes: Not affected.

Description: When a SYNC instruction is executed, the
processor enters a synchronizing state, stops processing
instructions, and waits for an interrupt. When an interrupt
occurs, the synchronizing state is cleared and processing
continues. If the interrupt is enabled, and it last three cycles
or more, the processor will perform the interrupt routine. if
the interrupt is masked or is shorter than three cycles, the
processor simply continues to the next instruction. While in
the synchronizing state, the address and data buses are in
the high-impedance state.

This instruction provides software synchronization with a
hardware process. Consider the following example for high-
speed acquisition of data:

FAST SYNC WAIT FOR DATA
Interrupt!
LDA DISC DATA FROM DISC AND
CLEAR INTERRUPT
STA X+ PUT IN BUFFER
DECB COUNT IT, DONE?
BNE FAST GO AGAIN IF NOT.

The synchronizing state is cleared by any interrupt. Of
course, enabled interrupts at this point may destroy the data
transfer and, as such, should represent only emergency
conditions.

The same connection used for interrupt-driven I/0 service
may also be used for high-speed data transfers by setting
the interrupt mask and using the SYNC instruction as the
above example demonstrates.

Addressing Mode: Inherent.

Transfer Register to Register

Source Form: TFR R1, R2

Operation: R1-R2

Condition Code: Not affected unless R2 is the condition
code register.

Description: Transfers data between two designated
registers. Bits 7-4 of the postbyte define the source register,
while bits 3-0 define the destination register, as follows:

0010=Y 1010=CCR
0011=US 1011 =DPR
0100=8P 1100 = Undefined
0101=PC 1101 = Undefined

0110 =Undefined 1110 =Undefined
0111 =Undefined 1111 =Undefined

Only like size registers may be transferred. (8-bit to 8-bit,

0000=AB 1000=A or 16-bit to 16-bit.)
0001 =X 1001 =B Addressing Mode: Immediate.
Test Description: Set the N (negative) and Z (zero) bits according

Source Forms: TST Q; TSTA; TSTB
Operation: TEMP-M -0
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

to the contents of memory location M, and clear the V
(overflow) bit. The TST instruction provides only minimum
information when testing unsigned values; since no unsigned
value is less than zero, BLO and BLS have no utility. While
BHI could be used after TST, it provides exactly the same
control as BNE, which is preferred. The signed branches are
available.

Addressing Modes: Inherent; Extended; Direct; indexed.
Comments: The MC6800 processor clears the C (carry) bit.

Fast Interrupt Request
(Hardware Interrupt)

Operation:
IFF F bit clear, then: SP’—SP - 1. (SP)~PCL
SP'—SP -1, (SP)-PCH
Clear E (subset state is saved)
SP'«SP -1, (SP)-CCR
Set F, | (mask further interrupts)
PC'—(FFFB).(FFF7)
Condition Codes: Not affected.
Description: A FIRQ (fast interrupt request) with the F (fast
interrupt request mask) bit clear causes this interrupt
sequence to occur at the end of the current instruction. The
program counter and condition code register are pushed

onto the hardware stack. Program control is transferred
through the fast interrupt request vector. An RTl (return from
interrupt) instruction returns the processor to the original
task. It is possible to enter the fast interrupt request routine
with the entire machine state saved if the fast interrupt
request occurs after a clear and wait for interrupt instruction.
A normal interrupt request has lower priority than the fast
interrupt request and is prevented from interrupting the

fast interrupt request routine by automatic setting of the

1 {interrupt request mask) bit. This mask bit could then be
reset during the interrupt routine if priority was not desired.
The fast interrupt request allows operations on memory, TST,
INC, DEC, etc. instructions without the overhead of saving
the entire machine state on the stack.

Addressing Mode: Inherent.

122

Interrupt Request
(Hardware Interrupt)

Operation:

IFF | bit clear, then: SP'—SP -1, (SP)-PCL
SP’'«SP -1, (SP)~PCH
SP'—S8P -1, (SP)-USL
SP'8P -1, (§P)~USH
SP'—SP -1, (SP)~IYL
SP'—8P -1, (SP)~IYH
SP'—SP -1, (SP)~IXL
SP'—SP -1, (SP)—IXH
SP'«<SP -1, (SP)-DPR
SP'—8P -1, (SP)-ACCB
SP'—SP -1, (SP)--ACCA

Set E (entire state saved)

SP'~SP -1, (SP»-CCR

Set | (mask*further IRQ interrupts)

PC'—(FFF8).(FFFQ)
Condition Codes: Not affected.
Description: If the | (interrupt request mask) bit is clear, a
low level on the TRQ input causes this interrupt sequence to
occur at the end of the current instruction. Control is
returned to the interrupted program using a RTI (return from
interrupt) instruction. A F_Iﬁ% (fast interrupt request) may
interrupt a normal TRQ (interupt request) routine and be
recognized anytime after the interrupt vector is taken.
Addressing Mode: Inherent.

Non-Maskable Interrupt
(Hardware Interrupt)

Operation:

SP'~SP -1, (SP)}-PCL
SP'~SP -1, (SP)-PCH
SP'—SP -1, (SP)~USL
SP'~SP -1, (SP)-USH
SP'SP -1, (SP)-IYL
SP'SP -1, (SP)~IYH
SP'+—8P -1, (SP)IXL
SP'«SP -1, (SP)-IXH
SP'~SP -1, (SP)-DPR
SP’«SP -1, (SP)-ACCB
SP'—SP -1, (SP)-ACCA
Set E (entire state save)
SP'--SP -1, (SP)-CCR

Set |, F (mask interrupts}

PC'~(FFFC):(FFFD)
Condition Codes: Not affected. o
Description: A negative edge on the NMI (non-maskable
interrupt) input causes all of the processor’s registers
(except the hardware stack pointer) to be pushed onto the
hardware stack, starting at the end of the current instruction.
Program control is transferred through the NMT vector.
Successive negative edges on the NMI input will cause
successive NMI operations. Non-maskable interrupt
operation can be internally blocked by a RESET operation
and any non-maskable interrupt that occurs will be latched. If
this happens, the non-maskable interrupt operation will occur
after the first load into the stack pointer (LDS; TFR r,s; EXG
1,s; etc.) after RESET.
Addressing Mode: Inherent.

Restart (Hardware Interrupt)

Operation:
CCR'«X1X1XXXX

DPR'00,5
PC'«—(FFFE):(FFFF)

Condition Codes: Not affected.

Deacription: The processor is initialized (required after
power-on) to start program execution. The starting address
is fetched from the restart vector.

Addressing Mode: Extended; Indirect.

NMI

RESTART

123

EJTASM

10

20

30

49

80

70

80

990

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
1000
1010
1020
1030
1040
1850
1060
1070
1080
1090
1100
1110
1120
1130

L . LU S

P e R Y

Reference M/
Sample Programs

Example 1

This is an exameple of a BASIC progdram that calls
an assembly langsuade prodram to paint the screen
vellow.

After entering the BASIC prodram save it on disk.

Run DOS and enter the assembly langdguade prodgram.
Use the WD and AD assembler commands to write the
spurce progdram to disk and to assemble it.

After returning to BASIC, load the assembled
Pprogram into memory with the LOADM command. You
must load the assembled Pprosram before the BASIC
Program,

This Prodram demonstrates how much faster
an assembly program can perform a function than a
BASIC statement. After vyou run the Pprodgram once:
delete lines 103¢, 1040, 1050, and 1120. Insert
this statement

1120 PAINT (1,1):2
and see how much longder it takes BASIC to paint
the entire screen vellow.

'Gpecify the hidhest address BASIC can use. This

‘! prevents BASIC from usind the memory that contains
‘ vour assembly landuade subroutine.

CLEAR 200,18127

PCLEAR B ‘preserve B rPades of drarhics memory

DEF USR®=16128 ‘define the subroutine starting address
‘ The disk drive uses rades @ and 1 of video memorv.

’ You must start at pade 2, hex 1200.

PMODE 3:2 ‘gplect mode 3 starting at pade 2
PCLS ‘clear the screen

SCREEN 1.0 ‘gplect draphics screens color set 0@
COLOR 31 ‘set foredround color to blue

A=USR(D) ‘eall the assembly landuage subroutine

‘draw a frame

125

M/ S8AMPLE PROGRAMS

1140
1150
1160
117@
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
13190
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1439

LINE
LINE
PAINT (2:2),4,43

FOR X=35¢ TO 80 STEP 2
¥Y=30:8T=,5:EN=0

GOSUB So0e0
Y=5@:8T=0:EN=,5

GOSUB S@@@:NEXT X

¥Y=30:8T=,5:EN=0Q

GOSUB S000
Y=50:8T=0:EN=,5

GOSUB SOQ@:NEXT X
Y=d4Q:18T=,25:EN=,73
GOSUB S@Z0
X=150:GO05UB S020
K=100:8T=,75:EN=,25
GOSUB S020
RX=190:GO5UB S020
PAINT (52,30):3:3
PAINT (1B2.:30):3:3
R=B@:H=1:G0SUB 5S¢40
R=37:H=1,7:G08UB S04@
R=15:H=4,7:G08UB 5049
ST=+5:EN=02

FOR X=78 TO 184 STEP
¥Y=124:G08UB 5000

NEXT X

‘draw umbrella handle
DRAW

@

FOR X=160 TO 180 STEP 20

23

(0,0)-(255,+191) »PSET+B
(12:12)-(242,+178) +PSET 2B

‘fill in the frame with red
‘draw tor circles
! of big cloud

‘draw bottom circles
! of big cloud

‘draw topr circles
of little cloud
‘draw bottom circles
of little cloud
‘draw left sides of clouds

‘draw ridght sides of clouds

‘fill the clouds in with blue
‘draw the umbrella

‘draw the sproKes of the

! umbrella

‘draw the scallored eddes

! on the umbrella

"BM121 +1205D4PSR25D2ZIRZIDZIRBIUZIR2IUZIRZTUSBS

L25D25L25D235L23D25L33U2L23U25L2Ude

1449
1450
1460
1470
148¢@
1499
1500
1510
1520
1330
1540
1552
1560
1372
1580
1599
1600
i61@
1620
1630
1649
1650

PAINT
PAINT
PAINT
C=8
FOR X=68 T0O 1B® STEP
PAINT (¥X,120).,C,3
C=C-1:NEXT ¥
‘play the sond
GDOSUB GOQO:PLAY L%
GOSUB 990@:PLAY L%
PLAY M%:PLAY E$:PLAY
PLAY G$:PLAY E$:PLAY
PLAY P&:PLAY Q%:PLAY
PLAY Re:PLAY S4$:PLAY
PLAY T&:PLAY P$:PLAY
PLAY U%:GOS5UB 900e
PLAY V$:PLAY E$:PLAY
PLAY W$:PLAY X%
‘Keerp the image on
Z2%=INKEY%
IF Z$=Ill|
END

(1224,122)+3,3
(124,+161) ,3
(126 ,+163) +3

THEN 1630

24

N$
0%
Es
R$
E#

Es

the screen

‘paint umbrella handle

‘set hidhest color number
‘paint umbrella ranels

"Raindrors Keer Falling On My Head"

until a Key is Pressed.,

126

EJifASM

5000
SO10
Sez20
S830
5S040
5050
5060
3078
G000
Go10
6020
6o3e
Gede
6050
6060
Go7e
Go8e
6090
Gleo
6110
6120
6130
6140
65150
6160
6170
6180
6190
6200
6210
6220
623¢@
9000
go1e
9620
8030
9040
9850

0100
po11@
00120
o130
o140
o150
o160
20170
00180
po19e
00200
0210
00220

CIRCLE (X»Y)»13:+3:.45,:5TEN

RETURN

CIRCLE (Xs¥)s16:+3,:.75:5T+EN

RETURN

CIRCLE (1244+124)Y3R+3+H . 5,0

RETURN

‘These lines define the notes of the song.
A$="033iL4ALB, JAL1BALE, B-sL1BALB.GILIGFiILY,5A"
B$="PBiP4iPBiP1G"
C$="033L163Ci045L4CILB,CL1BCILB,.5DL1IBCILB,5C"
D$="03iLIGALAAIB-SGIiFI043EP4A"

E$=HP4“
F$¢="045L8,3DiL1BC0335LB,5ALIBEQ43iLL4,.E"
G$=IIPBH

He="043L4,:5D"
I¢="0435L4C5L.8,3iCi033iL1BALEB,B-"
JE="045L16C3035L8,iB-3L1GBA"
Ké="0d435L4,3CipP4"

Le="033L4AFiFsG"

M&="035L27A"

N$="0435L8, CI035L2G"
04="033iLB,AL4B-3L4ALAG"

Ps="0335LB., sFsL4AL4,5G"
Q="035L4A5..8,3B-504s5L4DsL4Cc"
R$="PBIPIG"

S$="03iL1GAs0D4sLB8DsL4Cs5L2EC"
T¢="03iLI1GASD4LBELADLEZC"

Us="P23iP1L"

Ve="035LAFSFIGiL2.,3A"

Wé="035L8, sFILIGFI045LB.,DILIBCA35LA4F"
RE="035LBASGILAF L2, 3F"

PLAY A%:PLAY B%:PLAY C%

PLAY D%$:PLAY E$:PLAY F$

PLAY G$:PLAY H$:PLAY G%

PLAY I$:PLAY J%

PLAY I4%:PLAY K%

RETURN

Use EDTASM or EDTASMOV to enter this Prodram.
the prodram on diskK with WD command and
assemble the Prodgram with AD command. Do
use the 5R switch because this pProdgram is
called from BASIC, not executed fraom DOS.

*
*
*
*
*
*
*# Use the LOADM command to load the assembled cod
* into memory before vou load the BASIC ero
* The ORG statement tells BASIC where in me
* to load the program.

*

ORG $3F0@
*

Save

not

e
gram.
mory

127

M/ SAMPLE PROGRAMS

00230 * Put the hex code for a vellow Point (35H) in
20240 * register A and the address of the first bvrte
QD250 * of video memory (120@) in redister X.
00260 * The first bryte of video memory is 1200 hex
Q0270 * because the disk drive uses memory ue to“that
0280 = address.
20290 =
Q03090 START LDA #4595
00310 LDX #$1200
Q0320 *
¢033@ * Store the vellow dot at the current video memory
@0340 =* address and increment X to the next video
Q0350 * memory address.
00360 *
08370 SCREEN STA s K+
00380 CMPX #$2FFF Is it the end of video memorvy?
00390 BNE SCREEN If nos» continue to store dots
00400 RTS If vess exit subprogram and
Q0410 * and return to BASIC
00420 DONE EQU *
00430 END START

Example 2
20 ' After entering the BASIC prodram save it on diskK.
30
49 * Run DOS and enter the assembly landuade Program. Use
o0 the WD and AD assembler commands to write the
g0 source prodram to disk and to assemble it.
70
80 ' After returning to BASIC, load the assembled
90 ¢ prodram into memory with the LOADM command., You
ig0 - must load the assembled Pprodgram before the BASIC
119 7/ Program,
12¢
130 ’ Specify the highest address BASIC can use. This
149 prevents BASIC from using the memory that contains
15 vyour assembly landuade subroutine.
160 CLEAR 200, 16127
17¢ DEF USR@=16128 ‘define address of subroutine
180 CLS ‘clear the screen
190 / Print a prompting messade and wait for a response.
200 INPUT "Press [ENTER] when readvy"i A%
2190 A=USR(®) ‘call subroutine

22@ ‘Print another Prompting messade and wait for a resrponse

230 INPUT

"Want to do it adain"§ A%

240 ‘'If operator tvypes vess start ocver., Otherwise end.,
250 IF A$="YES" THEN 20 ELSE END

128

00100
oo11¢0
00120
00130
00140
00150
poi60
00170
00180
00190
00209
00210
00220
00230
00240
20250
00260
00270
00310
00320
00330
00340
20350
00360
00379
00380
00390
oo400
ooaie
00420
20430
00440

d ok ok ok ok ok k ok ok Kk ok

TART

Store

CREEN

DONE

Use EDTASM or EDTASMOV to enter this pProdram. Save

the Pprodram on disK with WD command and
assemble the program with AD command. Do not
use the SR switch because this pProdram is
called from BASIC, not executed from DOS,

Use the LOADM command to load the assembled code

into memory before vou load the BASIC eprogram.
The ORG statement tells BASIC where in memory
to load the Prodram.

ORG $3F00

Put the hex code for a red checKkerboard in

redister A and the address of the first bvte
of video memory (40@) in redister X.

LDA #$QF9
LDX #5400

the red checKerboard at the current video
memory address and increment X to the next
video memory address.

STA PR+

CMPX #%B600 Is it the end of video memory?

BNE SCREEN If nos continue to store red
checKerboards

RTS If ves, exit subprodram and
and return to BASIC

EQU *

END START

129

SECTION VI

PROGRAM LISTING

EDTASM

SECTION Vi

PROGRAM LISTING

This section provides a complete source list-
ing of the DOS program.

131

PAGE

BRs63B
20640
234650
@550
205670
20680
234690
0e702
20710
02720
20738
@740
Ba750
22760
ea77e
20780
@a77a
ooz
02810
208z
20830
20840
00850
0Resd
2es7a
o862
208902
20700
20710
20720
BR730
BOF40
80959
20960
22970
20980
20990
81000
01210
01020
01030
01040
21050
o1260
o107
@i1o80
21092
21100
21110
21120
P1130
@1140
81150
01168
p1170
21180
01198
21200

223 DOC

22112
80113
@a114
8@B115
Bo116
@B117
02118
eB119
28120
22121
RO122
20123
Rot124
80125
00126
o127
@128
8129
20130
29131
3132
20133
28134
29135
PB136
0137
20138
@139
20140
Ba141
00142
28143
28144
83145
2B146
22147
20148
28149
28150
00151
@015z
22153
20154
881535
02156
28157
20158
20159
02162
0161
20162
@0163
22164
B3165
BA166
821467
23168
0169

.5A:0

2220
oaoei
geaz
o3
004
20r5
Boss
aas7
o0s
ooy
oA
]
oaac
@oep
BBRE
@ooF
o010
2811
ee1z
2213
o214
Ba15
2016
0a17
ooi8
2219
@a1A
2318
@o1c
201D
@21E
PB1F

P3>3

L R e e e 2 S e R Lt 2
#* INSTRUCTIONS
AT I I IEAE NI TN IEN TN I I IE I I IE I I NN

*
*

FOR USE

B T S R e s 2
* ERROR NUMBERS AND THEIR MEANING

* (THE EQUATES ARE USED SO THAT ERRORS CAN BE RESEARCHED USING XREF LIST)
* DEFINITIONS START WITH BASIC LINE NUMBER 254 IN DOS

Ly e O s

ERR@
ERR1
ERRZ
ERR3
ERR4
ERRS
ERR6&
ERR7
ERR8
ERR?
ERR1Q
ERR11
ERR1Z
ERR13
ERR14
ERR13
ERR16
ERRL7
ERR1B
ERR19
ERRZO
ERRZ1
ERRZ2
ERRZ3
ERRZ4
ERRZ5
ERRZé&
ERR27
ERRZ8
ERR2Z?
ERR30
ERR31
*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGU
EGQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

2

Rl RN R R A S

22
23
24
z5
26
27
28
29
30
31

256
257
258
259
260
261
262
263
264
265
266
267
268
269
272
271
272
273
274
273
276
277
278
279
280
281
282
283
284
285
286
=87

NO ERRORS

1/0 ERROR — DRIVE NOT READY

I/0 ERROR — WRITE PROTECTED

I/0 ERROR — WRITE FAULT

I/0 ERROR — SEEK ERROR OR RECORD NOT FOUND
I/0 ERROR - CRC ERROR

I/0 ERROR ~ LOST DATA

170 ERROR -~ UNDEFINED RIT 1

I1/0 ERRCOR - UNDEFINED BIT @

REGISTER ARGUMENT INVALID

FILE’S DIRECTORY ENTRY NOT FOUND

DIRECTORY IS FULL

FILE WAS CREATED BY "OPEN" FUNCTION

FILE NOT CLOSED AFTER CHANGES

ATTEMPTING TO ACCESS AN UNOPENED FILE
ATTEMPT TO READ - READ PROTECTED

RBA OVERFLOW (EXCEEDS 3 BYTES - 16,777:218)
ACCESS BEYOND EOF — EXTENSION NOT ALLOWED
FAT REWRITE ERROR

ATTEMPT TO CLOSE UNOPENED FILE

CAN’'T ACCESS RANDOMLY - REC SIZE IS ZERO!
ATTEMPT TO WRITE — WRITE PROTECTED

CAN®T EXTEND FILE ~ DISK CAPACITY EXCEEDED
ERROR WHILE LOADING OVERLAY ~— FUNCTION NOT PERFORMED
INSUFFICIENT PRINT SPACE ALLOCATED

I/0 ERROR DURING BASIC LINE READ

PROGRAM’S LOAD ADDRESS IS TOO LOW

FIRST BYTE OF PROGRAM FILE NOT EQUAL TO ZERO
SPACE FOR BUFFERED KBD NOT BIG ENOQUGH

NOT ENOUGH MEMORY

QUTPUT FILE ALREADY EXISTS

WRONG DISKETTE

A I I DA I I I IE I I I I AU IE 60636 96 I T I FEIEIEIE I I T I I IE I T IR
* DISK DATA CONTROL BLOCK (DCB) FORMAT

ETTASM

EJIASM

PAGE

B1z1@
01220
01230
81240
21258
01260
B1270
01280
21270
21300
21310
21328
81330
D1348
81350
01368
@1370
21380
21390
01400
R1410
81420
21430
01440
@1450
21460
21470
01480
21493
01500
21510
21520
21530
81548
B155@
815360
e157a
21580
21598
21600
01610
01620
81630
01640
014650
D1660
21670
21680
81692
21700
21718
B1720
21730
21740
01750
817460
81770
21780

@24 DOC

eei70
20171
@e17z
28173
BR174
28175
eri7s6
v177
20178
80179
@o180
oB181
o182
20183
22184
20185
20186
22187
o188
22189
8192
o191
@019z
28173
20194
PB195
201946
e.197
0198
28199
20z
eoz01
pazez
20203
20204
20z85
[ra L.
20za7
20208
20ze9
oBz10
2az11
onz1z
2az13
2Rz14
2Bz15
20z14
Bdz17
2Rz18
oaz1s
Rozz0
Rzl
Bozzz
PRz23
Q0224
0vz25
BR226
eezz7

.8A:08

fralridle]
2208
one
2aac
L] 3]

PP

D05 —~ INSTRUCTIONS
FAEIE I I I I I I 6T I J I IEIE NI I I I I A6 U6 IEIE I IETE T IE T AT I H I T I I 9 I I

BYTES CONTENTS
THESE ITEMS ARE A COPY OF DISK DIRECTORY ENTRY
8-7 FILENAME
8-1@ FILE EXTENSION
11 FILE TYPE
{(D=RPASIC PGMs 1=RBASIC DATAs2Z=MACHINE LANG. PGMs3=TEXT ED. SOURCE)
1z ABCII FLAG (@=BINARY:s FF = ASCII FILE)
13 NUMBER OF FIRST CLUSTER IN FILE
14-13 NUMBER OF BYTES IN USE IN LAST SECTOR OF FILE
THESE ITEMS WERE ADDED: USING LAST 16 BYTES OF DIRECTORY ENTRY
16 CURRENT FILE STATUS

BIT @ ON ALLOWS READS

BIT 1 ON ALLOWS WRITES

BIT 2 ON ALLOWS FILE CREATE IF NON-EXISTANT

BIT 3 ON ALLOWS FILE EXTENSION BEYOND EOF ON ACCESS ATTEMPTS

BIT 4 ON MEANS WORK FILE ~ DELETE FILE WHEN CLOSED

BIT 53 ON PREVENTS REWRITE OF FAT EVERY TIME A SECTOR IS ADDED TO
THE FILE. (MINOR POWER FAILURE INCONSISTANCY COULD RESULT)

BIT & ON MEANS I/0 BUFFER IS SHARED. EACH LOGICAL I/0 REQUIRES

A PHYSICAL I/0
BIT 7 RESERVED FOR FUTURE OPTION(LIKE RELEASE SPACE WHEN FILE SHORTENED)
(ALL BITS OFF = FILE CLOSED)
17-18 LOGICAL RECORD SIZE (AS OF LAST TIME FILE WAS CLOSED)
ZERO MEANS VARIABLE LENGTH WITH RECORDS TERMINATED BY THE
DELIMITER STORED BRELOW.
$FFFF MEANS VARIABLE LENGTH WITH FIRST TWO BYTES OF RECORD
CONTAINING SIZE OF THE REST OF THE RECORD.
AlLL OTHER VALUES MEAN FIXED LENGYTH OF SPECIFIED SIZE.
19 VARIABLE LENGTH RECORD TERMINATOR
Z0-31 AT PRESENTs UNUSED PART OF DIRECTORY ENTRY - USE WITH CAUTION.

THESE ITEMS ARE USED FOR PHYSICAL 1/0 PARAMETERS
32 LAST 1/0 OPCD

33 LAST I/0 DRIVE

34 LAST 1/0 TRACK

35 LAST I/0 SECTOR

36-37 LAST I/0 BUFFER POINTER

38 LAST I/0 RESULT CODE

THESE ITEMS ARE FOR LOGICAL USE

39-40 LOGICAL RECORD BUFFER (CAN BE SAME AS DCBBUF IF DCBRSI=236)

41-42 LAST 1I/0 PHYSICAL RECORD NUMBER (BEFORE XLATE INTO SECTOR WITHIN
GRANULE). THIS I8 THE RECORD CURRENTLY IN THE BUFFER.

43—-43 CURRENT RELATIVE BYTE ADDRESS (RBA) OF FILE DATA POINTER

446-47 CURRENT LOGICAL RECORD NUMBER

48 MODIFIED DATA TAG - SET NON-ZERO WHEN BUFFER CONTENTS CHANGED

EQUATES FOLLOW FOR MEANINGFUL SOURCE CODE WHEN ACCESSING DCB
IE: STD DCBLRNsU SAVE NEW LOGICAL RECORD NUMBER
(BETTER THAN STD 445U)

Aok ok ok ok ok ok k ok Kk %k & & ok ok ok ok gk ok ok ok ok R ok k ok ok k Kk ok ok k ok k ok Kk &k Kk k k k k Kk k Kk k& ok Kk k k ¥ %k

DCEFNM EQU @ FILE NAME

DCBFEX EQU 8 FILE NAME EXTENSION
DCBFTY EQU 11 FILE TYPE

DCBASC EQU 12 ASCII CODE

DCBFCL. EQU 13 FIRST CLUSTER NUMBER

PAGE

21758
01800
21810
01820
21830
21840
21850
21860
21878
21880
@18%2
21900
21910
21920
01930
21940
21950
219680
21970
01980
81992
2z0B0
Bzo10
0zoze
22030
02048
02050
R2960
Rze7e
02080
229992
02100
22110
2120
22136
B2140
Bz150
22160
@z170
021808
22190
02200
Rzz18
Q2229
02230
02249
B2258
82250
Qz270@
02280
229
02300
22310
82320
@z2330
82340
223509
02360

225 DOC

BRzz8
20229
20230
0Bz31
20232
80233
P2Bz34
@0dz35
@R23s6
0237
228238
2e239
20240
22241
2B242
B9z43
@0z44
28245
PBZ46
aaz47
20248
PB249
@az50e
20251
eBz52
eBzs53
Q0254
@Bz55
RRz56
B@z37
@3z58
oB259
22260
20261
oBzs2
BOZ263
0B2564
82635
B0z66
@Bz67
28268
BBz69
20z7a
2ez71
paz7z
anz73
eBz74
@az75
08276
2ez77
2ez78
20z79
20280
2az81
2azez
2ez83
28284
82283

.85A:0

202E
2010
o911
2013
PB14
8017
0020
0az1
@ezz
2223
2024
B2zé6
Boz7
pBz9
eezB
BozE
2039
Q231

ADBD
Bi52
ABRA
ADBS
ADD4
AQQC
AQBS8
Ba7C
ea7p
@07E
o12c
215A
8114

FF21
FF2@
FFz@
FF23
FF22
FF2z
FFo1
FFo@
FFOB
FFR3
FFoz
FFOzZ

8235
2034

[l l%]
2@55

2P PIDPD>BID

P> D>D>D>

>P>>>>>P>D>DD

>>» D>

DOS —~ INSTRUCTIONS

DCBNLS
DCRCFS
DCBRSZ
DCBTRM
DCBMRB
DCRUSR
DCBOPC
DCBDRV
DCBTRK
DCBSEC
DCBBUF
DCBOK
DCBLRB
DCBPRN
DCBRBA
DCBLRN
DCBMDT
DCBSBZ
*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGU
EQU
EQU
EQU
EQU
EQU
EQU

14
16
17
19
20
23
32
33
34
35
36
38
39
41
43
46
48

NUMBER OF BYTES USED IN LAST SECTOR
CURRENT FILE BTATUS

RECORD SIZE

VAR LEN RECORD TERMINATOR

MAX RBA

USER AREA

OPERATION CODE

DRIVE

TRACK

SECTOR

I/0 BUFFER ADDRESS

1/0 RESULT CODE

LOGICAL RECORD BUFFER ADDRESS
PHYSICAL RECORD NUMBER IN BUFFER
CURRENT RELATIVE BYTE ADDRESS
CURRENT LOGICAL RECORD NUMBER
MODIFIED DATA TAG

DCBMDT+1 SIZE OF DCB (CURRENTLY 5@ BYTES)

LR R R T T)
* EQUATES TO SUPPORT ROUTINES IN ROM OPERATING SYSTEM
FH I I I NI T F I T NI I I I KT I 6366 N

POLCAT
ROLTAB
JOYIN
BLKIN
CSRDON
WRTLDR
BLROUT
BLKTYP
BLKLEN
CBUFAD
IR&
POTS
ALPHLK
*

EQU
EQU
EQU
EQU
EQU
EQU
EGU
EQU
EQU
EQU
EQU
EQU
EQU

$A002
152
+ADOA
$A0D6
$A0D4
$ADDC
+A008
$7C
$7D
$7E
$18C
$15A
$11A

KBD ROLLOVER TABLE

JOYSTICK POT VALUES
KBD RTN’S ALPHA LOCK SWITCH

AR T I IE TN IR I AT NI R
* EQUATES TO XREF USE OF PIA°S
AT KA M I T AT JE 96T HE I

U4ACR EQU sFF21 CONTROL. REG
U4ADR EQU SFFZ0 DATA REG
U4ADD EQU $FFZ0 DATA DIRECTION REG
U4BCR EQU $FF23

U4BDR EGQU $FF22

U4BDD EGU $FF22

UBACR EQU EFF@L

UBADR EQU $FFoe

UBADD EGU SFFoe

UBBCR EQU $FF@3

UBBDR EQU $FFB2

usepDd EQU SFFAz

*

* MISC ADDITIONAL EQUATES

ENABLE EQU “20110101

DSABLE EQU Zo0p110100

* COLOR VALUES

BUFF EQU “LO02000000

CYAN EQU 01210101

EJTASM

PAGE

@2372
82380
22390
22420
02410
02420
82430
02440
22450
B2460
02470
82480
@2490
22508
02518
02520
@253e
82342
22550
025460
@257
02380
02590
02600
824610
Q2620

@266
02670
02680
82490
@2700
82710
Q2720
82730
82740
82750
22760
B2770
027802
0z279a
0vzs00
Qz8io0
o820
028302
22840
22858
02868
02870
22880
02890
02900
02910
0z920
22930
22949

@B DOC

0286
oezg7
Qez88
02289
20290
20291
oeze2
29293
28294
20295
82296
veze7
20298
oBzy9
0300
22301
Qa3az
0e383
23304
20305
28304
22307
Q308
2a3a9
oe310
20311
2831z
@313
2a314
Q0315
20314
20317
Pe318
22319
208320
o321
e3zz
20323
PB324
@325
PB3zs
a327
20328
20329
Q2330
82331
20332
@333
20334
@335
Q8336
@8337
22338
08339
00340
20341
20342
28343

.5A:0

20AA
QOFF
2000
2a55
BBAA
BOFF

B@sE
il L]
2009
20r8
QA5F
2a5B
@a5D
2215
2ea3
2eac
2a5C
20eD
2040
2013

2500
@204
eoes
Q001
2ea1
Qeaz
PBaE
2010
020
2040

>>PD>>P>2>3PP>P>>PP> DD

>>PP>>P>P>D>D

DOS ~ INSTRUCTIONS

MGNTA EQU %10101010
ORANGE EQU %11111111
GREEN EQU %00000000
YELLOW EQU 010108121
BLUE EQU %101010610
RED EQU Z11111111
CODES RETURNED BY POLCAT FOR FUNCTION KEYS

Up EQU $3E UP ARROW

DOWN EQU +0A DOWN ARROW

RIGHT E@U +09 RIGHT ARROW

LEFT EQU %08 LEFT ARROW

SUP EQU $5F SHIFT UP ARROW
SDOWN EQU 5B SHIFT DOWN ARROW
SRIGHT EQU $5D SHIFT RIGHT ARROW
SLEFT E@U $15 SHIFT LEFT ARROW
BREAK EQU $03 BREAK KEY

CLEAR EQU $@c CLEAR KEY

SCLEAR EQU $3C SHIFTED CLEAR
ENTER EQU $@D ENTER KEY

AT EQU 408 8" KEY

SAT EqU $13 SHIFTED "&" KEY
*

Rl L e L A S e L T LT ey Ty
#*D0O0OS8 MACRO AND LOGICAL EQUATES
HK KIS TEITEIIEIEIENIEJ NI I I I IEIE NI I T I I AT 06260 T I NI
DOs MACR CALL A DOS FUNCTION

263@ LDA #\1 OPTION

2640 JSR £\B1 INDIRECT FUNCTION ADDR

26538 ENDM

*

* EQUATES USED WITH DOS MACRO

*

* THE FOLLOWING USED WITH “OPEN"
OPEN EQU +600 OPEN FUNCTION

CREATE EQU 4 ALLOWS FILE CREATION ON OPEN IF NOT FOUND

EXTEND EQU =] ALLOWS EXTENSION OF FILE TO POINT OF ACCESS

INPUT EQU 1 USED TQ SIGNIFY THAT READS ARE ALLOWED

IN E@U 1 SHORTER FORM OF ABOVE

QUT EQU 2 ALLOWS WRITES

OUTPUT EGU CREATE+EXTEND+OUT USUAL COMBINATION FOR OUTPUT FILES

WORK EQU 16 CAUSES FILE TO BE KILLED WHEN CLOSED (WORK FILE)
FAST EQU 3z MINIMIZES FAT REWRITES

SHARE EaQU 64 USED WHEN 2 OR MORE FILES SHARE THE SAME 1/0 BUFFER

* EXAMPLES:

* DOS OPEN INPUT TO READ AN EXISTING FILE

* DOS OPEN OUTPUT TO CREATE & EXTEND AN OUTPUT FILE

* DOS OPEN IN+OUT TO UPDATE AN EXISTING FILE (NO EXTENSIONS)

* DOS OPEN INPUT+OUTPUT+WORK TO CREATE»> EXTEND: READ & WRITE AND KILL

* WHEN CLOSED (A WORK FILE)

* “SHARE" CAN BE ADDED TO ANY OF THE ABOVE EXAMPLES IF 2 OR MORE FILES

* WILL BE USING THE SAME 1/0 BUFFER AT THE SAME TIME. THIS OPTION CAUSES
* A PHYSICAL I/0 TO REFRESH THE BUFFER WITH EVERY LOGICAL I/0 OPERATION.
* WITHOUT THIS OPTIONs SEVERAL LOGICAL READS OR WRITES TO OR FROM THE

* SAME PHYSICAL SECTOR CAN BE DONE WITH A SINGLE PHYSICAL I/0. "SHARE"

* INCREASES THE AMOUNT OF ACTUAL I/0 ACTIVITYs BUT ALLOWS USE OF MANY

* FILES AT THE SAME TIME WITH MUCH LESS MEMORY REQUIREMENTS FOR BUFFERS.
*
*

USED WITH *"CLOSE" FUNCTION

PAGE

22950
02960
22978
22980
22990
23000
230810
03020
23238
23040
283050
23060
23070
23080
238590
23100
23110
23120
23130
83142
2315@
23160
23170
23180
23190
23200
03218
23220
23230
23240
23250
23260
23270
23280
03290
23300
23310
23320
03330
83340
23350
B3360
23370
23380
23390
03400
23410
03420
03430
83440
23458
03440
03470
23480
23490
03500
03510
23520

807 DOC

22344
@@345
20346
BB347
20348
20349
22358
20351
2@352
28353
0a354
28355
@356
28357
22358
Pa3sy
2a3s6a
223561
0362
2.3s83
BB364
BB365
20364
28367
203468
20369
@370
28371
20372
8a373
2a374
@@375
2e376
o377
20378
80379
2B380
20381
2e382
2e383
20384
Be385
80386
baza7
22388
2a3s9
28399
22391
80392
28393
R2394
20393
20396
Be397
20398
@399
20400
20401

.85A:0

B602
2000

@604
@606
2201
oo
gooo
ooz
2008

2628

BL0A
B68C
R&BE

2001

@2vE

2a0aA

>

>

>

DOS - INSTRUCTIONS

CLOSE EQU $602 CLOSE A FILE OPTIONS NOT USED
IT EQU]
* EXAMPLE:
* DOS CLOSE,IT TO CLOSE A FILE
*
* USED WITH "READ® AND "WRITE" FUNCTIONS
READ EQU $604 READ A RECORD
WRITE EQU 606 WRITE A RECORD
RBA EQU 1 TO READ USING REL BYTE ADDR
RECORD EQU Q
REC EQU o
UPDATE EQU 2 TO PREVENT ADVANCING REC NBR OR RBA AFTER A READ
NOW EQU 8 1 = ENSURE 1/0 BUFFER 15 WRITTEN TO DISK AFTER LOGICAL WRITE
EXAMPLES:
DOS READ»RECORD TO RANDOMLY READ BY RECORD NUMBER
(FIXED LENGTH RECS ONLY)
(USE THIS FOR NORMAL SEQUENTIAL READ OF FIXED LENGTH)
DOS READs RBA TO READ THE RECORD POINTED AT BY RBA
(REQUIRED IF USING VARIABLE LENGTH RECORDS)
DOS READs UPDATE TO READ BY REC NBR WITHOUT ADVANCING REC NER
DOS READ» RBA+UPDATE TO READ THE RECORD POINTED AT BY RBA & NOT CHANGE RBA
DOS WRITEsREC WRITE VIA RECORD NUMBER (FIXED LENGTH ONLY)
DOS WRITEsRBA WRITE FIXED OR VARIABLE RECORD
DOS WRITE»UPDATE UNLIKELY OPTION - WRITES RECORD BUT DOES NOT CHANGE

RBA OR REC NUMBER. COULD BE REWRITTEN AGAIN.
DOS WRITEs RBA+NOW SAME AGS: DOS WRITEsRBA FOLLOWED BY DOS RELSE.IT

ELSE EQU %608 USE TO RELEASE I/0 BUFFER WITHOUT CLOSING FILE
IF CONTENTS OF BUFFER HAVE BEEN CHANGED» IT IS REWRITTEN. THEN DCBPRN
I8 SET TO &FFFF TO ENSURE A PHYSICAL 1/0 BEFORE THE NEXT LOGICAL I1/0.
USE THIS FUNCTION WHEN USER IS CONTROLLING A SHARED BUFFER.,

EXAMPLE:
DOS RELSESIT

& ok ok ok ok ok ok 2Dk Kk ok k k k k Kk Kk Kk k Kk k Kk

USED WITH OVERLAYABLE FUNCTIONS

DO EQU $60A USE TO LOAD IF NECESSARYs THEN EXECUTE AN OVERLAY

GO EQU $60C USE TO XFER CONTROL FROM ONE OVERLAY TO ANOTHER IN SAME AREA
LOAD EQU $4H0E USE TO LOAD A SYSTEM OVERLAY - IT IS LOADED AT THE

* EXAMPLE:

DOS DOsMAP

*

* THE FOLLOWING USED WITH “LOAD® AND "DO" FUNCTIONS

INIT EQU 1 INITIALIZATION OF DOS

* EXAMPLE:

% DOS DO+ INIT EXIT PROGRAM & RE-INITIALIZE DOS

* NOTE: STACK AND OLYLOC SHOULD BE RESET BEFORE USING THIS OVERLAY
*

MENU EQU 14 DISPLAY DOS MAIN MENU
* EXAMPLE:

* LDS #STACK

% LDD #OVRLAY WHERE OVERLAY AREA SHOULD START
* STD >0LYLOC

* DOS DOsMENU

*

MAP EQU 10 DISPLAY BASIC LINES

* EXAMPLE:

* LDD #2808 FIRST LINE NUMBER TO BE DISPLAYED
* LDY #283 LAST LINE TO BE DISPLAYED

EiASM

PAGE

23530
03542
83550
83560
@357e
23580
23598
2834622
03610
Q3620
03630
B3s640
83650
B3660
23670
D348
03690
23702
e3710
23728
23730
037492
83750
83760
@377
23780
83790
23800
23810
[3820
838302
23840
83850
@3860
83870
23882
23892
23700
23910
@3920
3932
3940
239508
83960
83970
23980
23990
24000
04010
va@za
24030
24040
24050
04060
24070
24080
04892
84100

@28 DoC

o240z
0403
20404
2B405
80436
20407
20408
PR4B9
22410
20411
1 By
28413
2414
@0415
82416
B2417
28418
20419
20420
0421
@42z
B2423
oBaz4s
o0425
RB4LE
@R427
20428
Baaz9
B0430
@B431
BR432
20433
BR434
23435
20436
20437
20438
BB439
BR440@
BB441
80442
20443
28444
D445
B@446
@B447
20448
20449
22459
28451
20452
@433
PB454
B0435
2pa5s
@457
8.458
B0459

.8A:0

2oz

‘s

aoee

peac

20D

BROF

@911

B610
@612
@614

@616

>>>

DOS — INSTRUCTIONS

* LDU <CURSOR STARTING DISPLAY ADDRESS

* (IF STARTING ADDR IS ZEROs SCREEN WILL BE CLEARED FIRST AND ROUTINE
* WILL EXIT WITH U->FIRST CHAR AFTER FIRST LEFT BRACKET ON SCREEN)

* PSHS DsYsU (PARAMETERS ARE PASSED IN THE STACK)

* DOZ DOsBASMSG

* PULS DsYsU NORMALIZE STACK

* BNE ERROR BRANCH ON ANY FAILURE IF DESIRED

*

RUNIP EQU 2 KEYIN A NAME AND RUN PGM

* EXAMPLE:

¥ DOS DO»RUNIP

*

CPYFLE EQU 5 GET INFO FROM USER & COPY A FILE

* EXAMPLE:

DOS DO CPYFLE (IF "GO USEDs DOS MENU FOLLOWS COPY FUNCTION)
*

FIELDI EQU 11 INPUT A MAPPED FIELD

* EXAMPLE:

% LDX DEST WHERE THE DATA GOES IN MEMORY

* LDU FLDADR POINT TO FIELD ON SCREEN

* DOS DO.FIELDI INPUTS THE FIELD

* B IS RETURNED CONTAINING LAST KEYSTROKE ENTERED

*

EXEC EQU 12 GIVEN USRDCB CONTENTSs LOAD ROOT & EXECUTE PROGRAM
* EXAMPLE:

% (WHATEVER LOGIC TO PUT NAME IN DCB AT "USRDCB")
% DOS GOsEXEC JUMP TO LOAD & EXECUTE OVERLAY
*
REALTM EQU 13 CLOCK DISPLAY OVERLAY (SEE SKEL FOR EXAMPLE OF USE)
*
BUFPRT EQU 15 BUFFERED PRINT OQVERLAY
EXAMPLE:

LDU #SIZE (TOTAL MEMORY TO BE USED (ROUTINE + BUFFER)

(ROUTINE 18 AROUT 2Zz@ BYTES)
DOS DO,BUFPRT (SETS IT UP - OVERLAY & BUFFER PROTECTED FROM
BEING OVERLAYED).

FROM THIS POINT ONs CHARACTERS PRINTED BY CALLING “PRNT" WILL GO
THROUGH BUFFERED I/0. TO WRAP UP AT EOQJs DO THIS:

CLRA

JSR [PRNT I REQUEST TO END BUFFERING.
THIS WILL CAUSE "PRNT" TO WAIT UNTIL THE BUFFER 18 EMPTIED (PRINTER
HAS CAUGHT UP)» AND THEN OVERLAY AND BUFFER AREA ARE RELEASED.

OPY EQU 17 COPY A FILE
GIVEN:
U->S0URCE FILE DCB (NOT OPENED)
Y->DEST FILE DCB (NOT OPENED)
B (BIT @) — OFF IF NO DISKETTE SWAPPING»s ON FOR DISKETTE SWAPPING
RETURNED A=ERROR NUMBER

k ok Ak %k ok & kK 3k Kk k Kk k¥ k ok kK K K K X

SIMILAR FUNCTIONS FOR USING USER OVERLAYS

DOUSR EQU 610 LOAD IF NECESSARY & EXECUTE USER OVERLAY
GOUSR EQU 612 JUMP TO A DIFFERENT OVERLAY

LODUSR EQU 614 LOAD USER QVERLAY

#* USER SHOULD PROVIDE EQUATES FOR HIS OVERLAYS HERE

*

ERROR EQU $616 JSR HERE FOR DISPLAY OF ERR MSG

*

EJIASM

PAGE

04110
B4120
04130
04140
84150
04160
241790
24180
241992
84200
B4210
D4220
B4230
84240
04250
04260
04270
24280
04298
243020
24310

84342
04350

24380
2439

04440
04450

04490
B4500

B435402
245508

24598
04600

844630
B4640
84650
R44660
04670
04680

@29 DOC

08460
80461
B0462
20463
BA4LLSL
80465
D466
04467
20468
80469
k2470
20471
Bo472
BR473
20474
8475
20476
eB477
0a478
2479
20480
22481
20482
228483
20484
80485
oe4B6
PR487
23488
B@489
28490
D491
0B492
28493
BR474
21495
BR496
808497
0B498
80499
02580
sas5a1
0502
20583
22584
08585
o586
@asa7
@as5e8
os5e9
205102
20511
1512
80513
2a514
28515
B@s516
BB517A @15E

.5A:0

0618
2001
2008

B614A

Bb1C

B61E

> >

DOS — INSTRUCTIONS

TIME EQU $618 TURN ON/OFF TIME ROUTINE
ON EQU 1

QFF EQU @

* EXAMPLE:

* LDU #TMERTN LOAD ADDR OF ROUTINE

* DOS TIMEsON GO ACTIVATE THIS ROUTINE

*

PRNT EQU $61A PRINT A CHARACTER ON PRINTER

* THIS 1S CHANGED BY CALLING BUFFERED PRINTER OVERLAY TO POINT
* AT BUFFERED JO ROUTINE

*

KEYIN EQU $61C POLL KEYBOARD FOR INPUT CHARACTER

* THIS IS CHANGED BY CALLING BUFFERED KEYBOARD OVERLAY TO POINT
AT BUFFERED IO ROUTINE

*

BASIC EQU $61E JMP HERE TO RETURN TO BASIC

*

E L e e

* O THER USEFUL MACROS FoLLOW

WA I I I TEIE I I I IEIEI 6T I 3616 I6TE 6T 36963696 F B0 T I NN

ENABLI MACR ENABLE INTERUPTS

4328 ANDCC #%111@1111

4330 ENDM

*

DBABLI MACR DISABLE INTERUPTS

4368 ORCC #%081010000

437@ ENDM

*

NEGD MACR NEGATE D

4408 COMA

4410 COMB

442@ ADDD #1

4430 ENDM

*

LSRD MACR LOGICAL SHIFT RIGHT D

4468 LSRA

4478 RORB

4488 ENDM

*

LSLD MACR LOGICAL SHIFT LEFT D

451@ LSLE

4528 ROLA

4530 ENDM

*

CLRD MACR CLEAR D

4368 CLRA

4378 CLRB

4588 ENDM

*

INCD MACR ADD 1 TO D

461@ ADDD #1

44620 ENDM

*

Fe B J AT NI NI I I I I IEIE I IEIEIE I I I T I 6T I I I IR

* S YSTEM RAM - DoSs

F TN I I AT FE 2 I T I I F A IE I IE T IE I T T IE I I I 26 U606 620066 IR

* ADDITIONAL WS USING EXTENDED ADDRESSING
ORG $15E

PAGE

04698
04700
84710
04720
04730
4740
Q4750
24768
24770
24780
4790
24800
24810
24820
04830
04840
84859
84868
4870
84880
04890
24900
24910
04920
84930
84940
84950
84960
R4970@
04980
84990
85000
95210
850208
25030
25848
85950
25060
25070
85080
25852
851008
R511@
25120
05132
25140
85150
05160
25170
oo012
20220
20230
20040
02058
280360
22070
22080
22250

218 DOC

B0318A
28519
Ba520A
8a521
easzz
Pa523
20524
8a525
28526
0527
@8a528
o529
22530
88531
28532
B@B533
22534
BR335
0536
B@537A
@a538A
235394
@85408A
Ba541A
Ba542A
2A543A
RB344A
285454
BA546A
BA547A
0@548A
@0549A
B2550A
R@551A
@552
BB353A
PB354A
B@555A
PA556A
8as57
283584
835574
22560
B2561A
0562
205563
@B564
B@565
PB366A
20567
20568
28569
28572
@ns571
@]s572
ea573
R574
oe5735

24508
B600

0620
R622
@623
R625
0627
Bb629
Bb2B
Q62D
Bb62F
@631
B633
B635
Bb&6
8697
B8&6C8

@7c8
280D
0852
@897

@8pcC
@8DE

@8DF

2983

.5A:0

oaza

(1%)e4
2001
2ooz
ooz
Booz
ez
220z
osaz
ooz
ooz
@z
2231
2031
8031
@160
@045
@045
2245
8345
2043
@87¢8
Ll g
2021

eoo1

» P>

DOS -~ INSTRUCTIONS

ORG 500
* AREA WHERE USER ACCESSABLE VECTORS & VARIABLES STORED
VECTOR RMB 2%16 2 BYTES PER VECTOR

* OPEN OPEN A DISK FILE

CLLOSE CLOSE A DISK FILE

READ READ FROM A DISK FILE

WRITE WRITE TO A DISK FILE

RELSE RELEASE I/0 BUFFER (ALLOW USE FOR ANOTHER FILE)

DO L.OAD & EXECUTE A SYSTEM OVERLAY

<1d] LOAD ON TOP OF CURRENT OVERLAY & JUMP TO SYSTEM OVERLAY
LOAD L.OAD SYSTEM OVERLAY

DOUSR LOAD & EXECUTE USER OVERLAY

GOUSR LOAD ON TOP OF CURRENT OVERLAY & JUMP TO USER OVERLAY
LODUSR LOAD USER OVERLAY

ERROR DISPLAY ERROR NUMBER IN "A”

TIME TURN ON/OFF TIME INTERVAL ROUTINE

PRNT PRINT A CHARACTER ON PRINTER

KEYIN INPUT NEXT KEYSTROKE FROM KEYBOARD

* BAGIC RETURN TO BASIC CONTROL

CLOCK RMB z COUNT OF 6@THS OF A SECOND

% %k %k ok k K k k K k Kk k k *k

RETRYS RMB 1 NUMBER OF 1/0 RETRYS INITIALLY SET TO 5

RATE RMB 2 TIME CONSTANT THAT CONTROLS PRINTER TRANSMISSION SPEED

OLYLOC RMB z ADDRESS WHERE CURRENT OVERLAY WAS LOADED

USRBSE RMB 2 BASE OF USER’S ROOT + 1. POINTS TO ENTRY ZERO OF OVERLAY'S RBA’
HOOKL RMB z JUST BEFORE CHECKING FOR AUTO EXECUTE

HOOKZ RMB 2 JUST BEFORE BRANCHING TO USER PROGRAM

HOOK3 RMB Z

HOOK4 RMB 2

HOOKS RMB 2

RETURN RMB 2 CONTAINS TWO RTS CODES - ALL HOOKS RETURN THRU HERE

DOSDCB RMB DCBSZ DCB USED TO READ SYSTEM (OVERLAYS

MSGDCE RMB DCRGZ DCB USED TO READ "MAPS" AND MEBSAGES

USRDCE RMB DCBSZ DCB USED TO READ USER’S PROGRAM & OVERLAYS

SYSBUF RMB 256 BUFFER FOR SYSTEM USE(DIRECTORY + FAT READS & WRITES)
FATSZ EQU 69 FILE ALLOCATION TABLE (FAT) SIZE

FATO RMB FATSZ SAVE AREA FOR DRIVE @ FAT TABLE

FAT1 RMB FATSZ SAME FOR DRIVE 1t

FATZ RMB FATSZ

FAT3 RME FATSZ

FATS EQU FATO

MAXMEM RMB 2 ADDR OF HIGHEST USEABLE MEMORY
DRIVES RMB 1 MAX NBR OF DRIVES TO SEARCH ON GLOBAL OPEN
OPT L
ENDWSE RMB 1 END OF EXTENDED WS
OPT NOL
F AT I IE I I I I I I IEIEIEIE I I I I T I K I NI I NI I NN
* D ¢ 8§ s T A R T 8 H E R E

AT I I IR I T A6 I I T I I I IIEIE I I T I I IEIEIEIIE TN I I I I I AE I H I 26N
ORG ORGIN SEE 1ST MODULE FOR VALUE AGSIGNED

OPT L
TTL DOS - I/0 ROUTINES
OPT NOL

BT IR I I NI IE I I I I I I I I I I I I I I T I I I I IE I AT I I I I
* O PEN DISK FI1LE

*
* GIVEN:
* A=DESIRED FILE STATUS
* U->DCB

EDTASM

PAGE

Bo100
o110
20120
00130
20140
22152
22160
ga17e
22188
80190
02200
fQz10
00z20
2230
e0z40
20250
20260
00270
o2z80
oa29a
2a300
28310
0320
22330
2aa340
22350
223460
20370
28382
@378
28400
00410
00420
20438
00448
22430
20460
20470
2480
20490
00500
oes1@
22528
ea53a
22540
20550
005460
ee570
80580
8259a
Bos00
80610
R0620
20630
R640
205650
28663
oes78d

211 10

@576
28377
28578
@579
205808
28581
k@582
22583
28584
ev585
29586
22587
oe588
20589
20392
28571
ens92
28593
28594
@2a595
2a53946
BO597
28598
28599
20600
286081
B0sR2
00683
8B6B4A
B26054
0B686A
@2607A
20608A
PB687A
@o618A
QB611A
PB612A
B0613A
BBSL14A
086154
Ba616A
2B5617A
20618A
BR619
@B620A
B0621A
Ba622A
B2623A
DBL2LA
PB6LZ5A
PBE2EA
BAL27A
0B&628A
PB6Z9A
00630
B2631A
Ba632A
B8633A

8989
298C
@98E
2990
2992
2794
@996
@998
297A
@99C
@97D
B9A0
09a1
@9A4
@7A6

@9A8
B9AA
QFAC
BFAE
@588
9Bz
29B4
avp7
2988
Q98B

@9BD
@98F
89C1

.8A:0

E6
34
ct
27
ct
25
86
A7
35
SF
E7
4F
17
27
2B

81
26
&D
20
6D
2A
E6
5C
Fi
25

Ab
83
26

ca 21
16
FF
A
04
87
29
E4

/)

c8 zi

BzDZ
=1"]
]

21
EC
61
E8
61
29
ce 21

@8DE
E@

E4
24
B4

ac76
@9F6
2980

A
2998
A
@998
A
@9BD
A

A
Q99D

A
A
e9c7

DOS - 1/0 ROUTINES
DCBDRV:U = DRIVE TO BE CHECKED ($FF=CHECK ALL DRIVES)

BEFORE CALLING "OPEN"s DCB SHOULD CONTAIN: FILENAMEs EXTENSION,

170 BUFFER ADDRESS. NAME AND EXTENSION ONLY ARE COMPARED

TO DIRECTORY ENTRIES TO FIND MATCH. TYPE AND AGCII FLAG ARE USED ONLY
WHEN CREATING FILE (OTHERWISE THEY ARE OVERLAYED BY EXISTING VALUES).
ALL I/0 NEEDED TO OPEN FILE USES THE 236 BYTE AREA POINTED TO BY

LAST I/0 ADDRESS AS A BUFFER.

OPEN WORKS EXACTLY THE SAME FOR INPUT OR QUTPUT! ACTION IS5 CONTROLLED
BY FILE STATUS SUPPLIED IN "A* (8EE DCBCFS IN DCB DESCRIPTION).

OPENING A NON-EXISTANT FILE -~ IF CREATION IS ALLOWEDs FIRST 32 BYTES OF
DCB ARE PLACED IN DIRECTORY EXCEPT THAT DCBFCL. IS SET TO $FFs DCBNLS
IS SET TO ZERO AND DCBCFS IS SET TO PROVIDED STATUS.

OPENING AN EXISTING FILE - THE 32 BYTE DIRECTORY ENTRY OVERLAYS THE
FIRST 32 BYTES OF THE DCBR EXCEPT FOR DCBCFS WHICH IS SET TO THE PROVIDED
VALUE.

WHEN FILE IS OPENED» DCBPRN IS SET TO $FFFF (AN INVALID VALUE)s DCBRBA
1S SET TO ZERO» AND DCBLRN IS SET TO ZERO. AT ANYTIME BEFORE OR AFTER
CALLING OPENs DCBLRB CAN BE SET OR CHANGED.

FILE TYPE AND ASCII FLAG CAN BE CHANGED AFTER OPEN TO CAUSE THEM TO BE
CHANGED WHEN FILE 1S CLOSED.

% ok ok ok %k ook ok k sk Kk dk ok ok Kk k Kk K kK Kk Kk kK k ok ok ok *k

F I IE NI I T T I IE TN I T I TE I I I I ITEIE I I I I 16 I 266 T I3 I3 0N
DOPEN LDB DCRDRVsU

PSHS Ds X

CMPB #EFF REQUEST FOR SCAN OF ALL DRIVES
BE@ DOD IF YES

CMPB #4 VALID DRIVE REQUESTED?

BCS DO1 IF YES

LDA #ERR9 PARAMETER ERROR
DOERR STA s8

PULS D: X2 PC RETURN WITH ERROR CONDITION
D02 CLRB START WITH DRIVE ZEROQ
DO1 sT8 DCBDRVsU
CLRA SAY LOOK FOR MATCH
LBSR CHKDIR CHECK DIRECTORY ON THIS DRIVE FOR MATCH
BE® DO5 IF MATCH FOUND
BMI D03 IF NO I/0 ERRORS - JUST DIDNT FIND IT
% IT WAS SOME KIND OF 1/0 ERROR
CMPA #1 DRIVE NOT READY?
BNE DOERR IF NO
T8T 158 REQUEST FOR SPECIFIC DRIVE?
BPL DOERR IF YESs THEN THIS IS5 AN ERROR
D03 T8T 148 REQUEST FOR SPECIFIC DRIVE?
BPL DO4 IF YES» I DIDNT FIND HIS FILE
LDB DCBDRVsU LAST DRIVE CHECKED
INCB
cMPR DRIVES ANOTHER VALID DRIVE TO CHECK?
BCS DO1 IF YES
% MATCH NOT FOUND - I8 IT OK TO CREATE?
DO4 LDA + 8 (DESIRED STATUS)
BITA #CREATE CREATE BIT ON7?
BNE DO4A IF YES

EJASM

PAGE

20580
205690
Ba700
80710
22729
20732
@742
20750
Pa76@
o770
20780
eB792
20800
00810
20820
ons3e
@0840
0858
20860
00870
22880
20890
20700
82910
29720
22730
P04
00950
28760
20770
22980
22992
01000
01010
01020
21230
219402
eie59
21060
21872
231080
21090
21100
21110
@1120
01130
@1140
21158
81160
21170
21180
P119@
81200
81210
01220
21232
01240
01250

a1z

BA634A
BO635A
BOL36A
206374
@04638A
PB&637A
@04640A
BB&41A
ABLLZA
PB643A
PB&44A
BB645A
PBLLLA
BB&4TA
@BL4BA
BB&649A
P3650A
2Bs651A
BA652A
BBL53A
BR&L544A
BBES5A
BRLS6A
BB657

20658A
BBL59A
286684
RR&61A
BRLLZA
BB6LIA
BALELA
PBLESA
PB666A
BR6E7A
R266B8A
20669

BB&7BA
BO&71A
BAS72A
PB&73A
PB674A
QB&L75A
BAET A
BB&77A
2B&678A
BR&E79A
@B680A
BR&681A
2B682A
RD6LB3A
BREBLHA
BR6BIA
PR686A
204687A
04688

BB689A
BO&6IBA
B671A

10

B9C3
89C5
@9C7
aeCe
ace
89CE
@9De
@9D3
@9D3
@sD7
@D
B7DB
@9bD
Q9DF
@9E1
B9E3
BYES
@97
BIED
B9EB
@FEE
@9F1
B9F 4

B9F &
@9F8
BFFA
@9FC
@9FF
BAG1
BAB3
BABS
2ABB
BADA
PABC

BABE
BAlQ
BA13
BAL1SL
BALT
BA1B
BALD
Az
RAZZ
BAZ4
BAZT
BAZA
BAZC
BAZF
BA31
BA34
BA36
@A37

BA3EB
BA3E
Ba41

.5A:0

86
20
&D
2A
6F
86
17
27
ZA
86
20
Ab
A7
86
A7
86
A7

ED
ED
A7
17
20

Ab
A7
&F
Ab
27
84
27
&D
27
86
A7

Ab
A7
17
Ab
84
27
17
26
86
A7
17
zb
17
34
CE
Cé
17
35

cC
ED

DOS - I/0 ROUTINES
BA A LDA #ERR10 FILE DIRECTORY ENTRY NOT FOUND
D1 28998 BRA DOERR
61 A DO4A TST 1,8 ANY DRIVE SPECIFIED?
a3 @9CE BPL DO4EB IF SPECIFIC
c8 21 A CLR DCBDRVsU CREATE ON DRIVE ZERO
FF A DO4B LDA #$FF SAY LOOK FOR OPEN SLOT
B2A3 BC76 LBSR CHKDIR SCAN THE DIRECTORY
aé B7DR BE® DO4C IF SLOT FOUND
C1 @998 BPL DOERR IF SOME KIND OF 1/0 ERROR
aB A LDA #ERR11 DIRECTORY I5 FULL
BD @998 DOERRL BRA DOERR
E4 A DO4C LDA 18 DESIRED STATUS
61 A STA 1.8 SAVE IT
ac A LDA #ERR1Z2 SAY DIRECTORY WAS CREATED
E4 A STA +8
FF A LDA #$FF
4D A STA DCBFCLsU SET NUMBER OF 18T CLUSTER

CLRD

4E A STD DCENLS»U CLEAR BYTES IN LAST SECTOR
c8 14 A STD DCBMRBsU CLEAR MAX RRA
<8 16 A STA DCBMRB+2s U
B263 @C57 LBSR DCBDIR XFER DATA TO DIRECTORY
18 BABE BRA jolel-} GO CONTINUE PROCESSING

* DIRECTORY ENTRY FOUND
E4 A DO5 LDA S DESIRED STATUS
61 A STA 148 SAVE 1IT
E4 A CLR 3=
88 18 A LDA DCBCFSs X CHK PREVIOUS FILE STATUS
@D BARDE BE® DO& IF IT WAS CLOSED
BE A ANDA #CREATE+EXTEND+QUT IF LAST OPENED TO MODIFICATION?
a9 BABE BEQ D06 IF NO
88 10 A T8T DCBCFSs X CHK PREVIOUS FILE STATUS
24 BARE BEQ@ D06 IF IT WAS CLOSED
@D A LDA HERR13 8AY IT WASNT PREVIQUSLY CLOSED
E4 A 8STA [X-]

* XFER DIRECTORY ENTRY TO DCB
61 A DO& LDA 1,8 DESIRED STATUS
88 10 A STA DCBCFSs X PUT IN DIRECTORY ENTRY
Bz49 @CIF LBSR DIRDCB XFER DIRECTORY ENTRY TO DCB
c8 1@ A LDA DCBCFSsU
oE A ANDA #CREATE+EXTEND+QOUT WRITES ALLOWED?
@5 BAZZ BE® DO6A IF NO
@31iF @D3F LBSR SYSWRT REWRITE DIRECTORY RECORD
B7 @7D%? BNE DOERRL IF 1/0 ERROR
ez A DO&A LDA #2
c8 23 A 8TA DCBSECs U
@ZFD BDz27 LBSR SYSRED READ FAT RECORD
AD 8909 BNE DOERRL
BZ21C @C4B LBSR ADRFAT POINT "X" AT FAT TABLE IN MEMORY
49 A PSHS U
@s6C8 A LDU #S5YSRUF POINT TO BUFFER
43 A LDB #69 BYTES TO MOVE
B2ZZE BCL7 LBSR XFRUX MOVE THEM
40 A PULS U

* DO OPEN RESETTING
FFFF A LDD #$FFFF
c8 =29 A STD DCBPRNs U

CLRD

EJIASM

PAGE @13 10 .8A:0 DOS ~ I/0 ROUTINES

912460 BBLI2A BA43 ED c8 =B A STD DCBRBAs U

@1270 BBLI3A BALL A7 ca 2D A STA DCBRBA+ZsU

D128 DBLI4A DA4T ED €8 ZE A STD DCBLRNs U

B1270 DBLISA BA4LC &F c8 30 A CLR DCBMDT» U

1300 BDLYLA BALF 16 @2@8C OADE LBRA Des

21310 BV&T7 *

Q1328 20698 LR e R T e O S s s Ty s
@1338 20699 # CLOSE DI SK FILE

21340 BB700 *

@135 20701 * GIVEN: U -> DCB (CONTAINING FILE STATUS)

21340 007082 *

B1370 BB703 * FUNCTION:

21380 20704 * FIND DIRECTORY ENTRY AND VERIFY THAT FILE IS OPEN. THENs IF FILE IS
01390 28705 * TO BE KEPTs UPDATE AND RE-WRITE DIRECTORY ENTRY AND REWRITE FAT TABLE.
21408 @O726 * JF FILE IS TO BE PURGEDs MARK DIRECTORY ENTRY AS RE-USEABLE AND RE-WRITE
21410 20707 * THEN MARK CLUSTERS AVAILABLE IN FAT TABLE AND REWRITE.
@1420 BO708 L g T e T T T ey
P1432 @B709A BASZ2 AF DCLOSE CLRA (RESULT CODE)

81440 OB710A BAS3 34 16 A PSHS Ds X

B1450 BB711A BASS 4F CL.RA SAY LOOK FOR A MATCH

21460 BB712A QASSL 17 BZ1D @76 LBSR CHKDIR CHECK DIRECTORY FOR A MATCH

@1470 DB713A BAS9 27 7 2ALZ BE® DC1 IF MATCH FOUND

D1480 BR714A BASE ZA B’z BASF BPL DCERR IF 1/0 ERR

214983 20B715A DASD 86 @A A L.DA #ERR1Q DIRECTORY ENTRY NOT FOUND

21500 @PB7146A DASF 164 FF34 8998 DCERR LBRA DOERR

1512 BR717A BALZ A& €8 1@ A DCt L.DA DCRCFSsU IS FILE OPEN?

01520 BA718A BALS 26 a4 AAaLB BNE DC2

@1530 QB719A DALT Bb 13 A L.DA #ERR19 CLOSING UNOPENED FILE

Q1540 @O720A DALY 20 F4 BASF BRA DCERR

21558 @B721A QALB EC c8 22 A DCZ LDD DCBTRKs U

B1340 BD722A BASLE 34 i) A PSHS D SAVE LOC OF DIR ENT

B1578 @BO723A BA7@ 17 @2DB @D43 LBSR REWRTE REWRITE BUFFER IF IT HAD BEEN MODIFIED
21580 BB724A BA73 35 1) A PULS D

B1598 BA725A @A7S 26 ES8 BASF BNE DCERR IF 1/0 ERROR OCCURRED IN THE PROCESS
@1600 AB726A BA77 ED c8 22 A STD DCBTRKsU RESTORE LOC OF DIR ENT

B1&£10 OB727A BATA A6 c8 1@ A LDA DCBCFSs U

01620 PR728BA @A7TD 34 2z A PSHS A SAVE FOR DIRECTORY RE-WRITE DECISION
B1630 DO729A BATF &F c8 18 A CLR DCBCFSsU CLEAR CUR FILE STATUS IN DCB

@1640 BB73DA BABZ B4 10 A ANDA #WORK WORK FILE TO BE DELETED?

014650 BO731A BAB4 27 18 BAGE BE® DC4 IF NO GO REWRITE DIRECTORY & FAT TABLE
B166B BB73ZA BABSL b6F C4 A CL.R sU MARK DIRECTORY ENTRY AS RE-USEABLE
D1670 OB733A BAS8 34 10 A PSHS X SAVE ADDR OF DIRECTORY ENTRY

01680 BB734 * MARK FAT TABLE ENTRIES AS AVAILABLE

D14690 BA735A 0ABA 17 @iBE OC4B LBSR ADRFAT POINT "X" AT FAT TABLE IN MEM

21700 BB736A BABD Ab 4D A LDA DCBFCLsU GET FIRST CLUSTER NUMBER

@171@ OB737A BABF 2B @B RAFC BMI DC3A IF NO CLUSTERS IN USE

B1728 BB738A DA9L Eb 86 A DC3 LpB AsX GET NUMBER OF NEXT CLUSTER

@1730 BB739A BA93 &F 846 A CLR As X CLEAR CLUSTER ENTRY

01748 BB740A QATS bHA 86 A DEC A X SET TO #FF

21750 @B741A DATFT7 IF 98 A TFR BsA

017648 ODB742A BA9T 4D TSTA

Q1778 BB743A DATA 2A F5 AL BPL DC3 IF MORE TO GO

21788 BB744A BARC 35 10 A DC3A PULS X ADDR OF DIR ENTRY

@1798 BD745A QATE 17 @1B6 @C57 DC4 LBSR DCBDIR XFER TO DIRECTORY

01800 BB746A BAAL 35 2z A PULS A PRE-CL.OBE CFS

21810 OB747A DAA3 B4 @E A ANDA #CREATE+EXTEND+OUT WRITES ALLOWED?

21820 PB748BA QAAS 27 15 BARC BE® DC4RBR

21830 BA747 * SET DCBNLS TO REFLECT DCEBMRB (MAX RBA)

EDiASM

PAGE

01848
21850
21860
21870
01880
91890
21500
91910
01920
21930
21940
81958
01960
21972
21980
01990
0zooo
02010
22020
22030
22040
02050
02060
02070
02080
02090
82100
92110
02120
92130
22140
22150
22160
02170
02180
82190
02200
02210
p2228
02230
02248
p2250
02260
02270
02280
02298
92300
02310
02320
02330
02340
82350
02360
02370
22380
8z39@
02400
02410

@14 10

227504
Ba751A
BR752A
@0753A
@a754A
BA755A
@B756A
B@757A
2’7584
@a759A
28768A
PB761A
87624
PA763A
DB764A
BA7465A
BO766A
287674
007684
BR769A
@a770A
PB771A
@a772A
8a773A
Q@7 74A
8a775
20776
ea777
va778
o779
280780
29781
a!782
@a783
20784
20785
@786
2a787
00788
ga789
20792
@791
@792
28793
20794
2795
28796
Ra797
20798
7794
208204
208014
o98a2
22803
20804
2ABaAsA
22826A
208a7A

@AAT7
BAAB
BAAB
@AAD
@ABR
BABZ
BABS
BABR7
BABA
BABC
BABF
BACH
BACH
BACSE
BACY
BACB
BACD
@AD@
QADZ
DADS
@AD7
BADA
@ADC
@ADE
QAED

BAEZ
RAE4S
BAE7

BAEA
BAED
BAEE

.8A:0

4F
E&
26
EC
27
cc
ED
17
26
17
34
CE
ce
17
e
cé
17
35
86
A7
17
27
A7
&D
35

34
cC
17

E6
4F
AL

88 16 A
[z] PABRS
88 14 A
3 BABS
oie0 A
QE A
@285 @D3F
A3 BASF
@18C @C4B
49 A
0s6C8 A
435 A
B1A6 BCOLF
41 A
BA A
@197 @C647
4@ A
.74 A
8 23 A
@265 @DIF
@z @ADE
E4 A
E4 A
96 A
32 A
210F A
291 PB7B
c8 2D A
=1 A

DOS ~ I/0 ROUTINES

CL.RA
LDB DCBMRB+21 X
BNE DC4A
LDD DCBMRBs X IS IT A NULL FILE
BE® DCa4A IF YES
LDD #5100
DC4A STD DCBNLSs X
LBSR SYSWRT RE-WRITE DIRECTORY RECORD
BNE DCERR IF 1/0 ERROR
DC4B LBSR ADRFAT

PSHS ¥] SAVE DCR ADDR

L.DY #BYSBUF POINT TO SYSTEM’S BUFFER
LDB #69

LBSR XFRXU XFER INTO BUFFER

LEAX 1,V

L.DB #256-69-1

LBSR XFRUX CLEAR REST OF BUFFER TO $FF
PULS 1Y) REGTORE DCB ADDR

LDA #2

STA DCBSECsU

LBSR SYSWRT WRITE IT

BE®@ DCS
sSTA 'S IF 1/0 ERROR
DCS T8T [2=] SET COND CODES

PULS Ds Xs PC
*
H 36336 I 2 KN I I 26 2 A J I K16 I I3 I H I I X6 I I IR K I I NI T I I I I I W IR N
READ A LOGICAL DISK RECORD

GIVEN: U ~»> DCB (THAT HAS ALREADY BEEN OPENED!)

A = FUNCTION DESIRED CODED AS FOLLOWS:
BIT @ ON TO READ VIA RBA

OFF TO READ VIA LRN
BIT 1 ON TO READ WITHOUT CHANGING POINTER

OFF TO EXIT AFTER POINTING AT NEXT (PREVIOUS) RECORD
BIT 2 ON TO READ BACKWARDS

OFF TO READ FORWARD
EXAMPLE: A=ZERO TO READ THE CURRENT LOGICAL RECORD AND THEN ADVANCE
THE LOGICAL RECORD NUMBER BY 1. A = 2 TO "READ FOR UPDATE" A LOGICAL
RECORD. A = 1+4 (5) TO READ S8TARTING WITH THE RBA’TH BYTE OF DATA
IN THE FILEs FOR DCBRSZ BYTES. THEN SET RBA TO POINT DCBRSZ BYTES
AHEAD OF THE FIRST BYTE READ.

NOTE: LOGICAL RECORD SIZEs RECORD STORAGE ADDRESS AND I/0 BUFFER
ADDRESS ARE USED. IF LOGICAL RECORD SIZE IS 256y RECORD STORAGE

AND I/0 BUFFER MAY BE THE SAME ADDRESS. IF DCBRSZ 1S ZEROs READS WILL
TRANSFER BYTES FROM THE FILE TO [DCBREC]1 UNTIL A CHARACTER MATCHING
DCBTRM IS TRANSFERRED.

A IEK NI I I I I I IEIEIEIE I KTE N IEIEIIETEIEIEIE I I I IE I I 36 96 9606 I696 96936 06 96 269636 0696 096 963600 6 H 2 0 06
DREAD PSHS AsXaY

LDD #$0100+ERR1S

LBSR RDWR DO SETUP COMMON TO READ AND WRITE

& sk ok ok ok ok ok ok ok ok ok k k ok ok ok ok k ok ok %k

*

* LOOP TO XFER BYTES TO RECORD AREA

* (X->BUFFER: Y—->RECORD AREA)

DR3 LoD DCBRBA+2+U DISPLACEMENT IN CURRENT SECTOR
CLRA
LDA DsX GET A BYTE

EDTASM

PAGE 815 10 .5A:0 DOS - I/0 ROUTINES

22420 00BOBA OAFQ A7 AR A STA sY+ STORE IN RECORD AREA

22430 BRBOFA BAFZ &6C c8 2D A INC DCBREA+2ZyU ADVANCE POINTER IN BUFFER
02443 DOB1@A QAF3 26 1E 2815 BNE DRSB IF IN SAME SECTOR

22458 BAB11A BAF7 17 @249 @DA3 LBSR REWRTE ENSURE PREVIOUSLY MODIFIED DATA GETS WRITTEN
82460 BOBLZA BAFA 26 QE @BoA BNE DRSAA IF WRITE ERR

82470 20813A BAFC EC c8 ZB A LDbD DCBRBANU

82480 00814A BAFF C3 o0l A ADDD #1 POINT TO NEXT SECTOR

02498 00815A DBE@Z ED c8 2B A sTD DCBRBAsU

82500 00816A BBB5 17 8z91 @D99 LBSR CALSEC RECALCULATE TRACK & SECTOR
02518 6O81I7A BBB8 27 [oB1d BE@ DR5A IF OK

02520 00818A @BBA 3z &7 A DR3IAA LEAS 718 SCRAP STUFF IN STACK

82530 BOB817A BBBC A7 E4 A STA s 8

82540 20820A ORBE 35 B2 A PULS Ay X2 YsPC

22558 DPB21A BB1O 17 @1D4 BCE7 DR3A LESR DSKRED

22560 DOB2ZA BB13 26 F3 2B0A BNE DRSAA IF 1/0 ERROR

22570 20823A BB15 EC E4 A DRSBR LDD 'S GET COUNT DOWN VALUE

82580 POBZ4A OB17 27 a9 8Bzz BEQ@ DR5C IF VARIABLE LENGTH STRING
02590 208z25A BB19 83 2061 A SUBD #1

22600 DO826A ORIC ED E4 A STD (3]

@2610 PBB2Z7A ORIE 26 cA BAEA BNE DR5 G0 GET ANOTHER CHR

22620 0@82BA @BZO z0 o7 eez29 BRA RDUWRX GO DO CLEAN-UP COMMON TO READ AND WRITE
PZ630 PBBZFA BBZZ Ab c8 13 A DR3C LDA DCBTRMsU STRING DELIMITER

22640 DO83BA @BZT Al 3F A CMPA -1sY WAS LAST CHR STORED A DELIMITER?
B2650 00831A @BZ7 26 Ci BAEA BNE DR5 IF NO» KEEP GOING

02660 Q0832 *

02670 BO833 B Y AT IR 2 X

22680 20834 % CLEAN UP COMMON TO READ AND WRITE

82692 Q@835 F AR KRN R IR H IR RN

@2700 20834 * RECORD HAS BEEN READ - CLEAN UFP

02710 OBB37A 0B29 35 2] A RDWRX PULS D

02720 DOB38A OBZB AbL c8 1@ A LDA DCBCFSsU FILE STATUS

82730 BDOB37A QBZE B85 40 A BITA #SHARE OPTION SET?

82740 BOB4DA BB3Q 27 @8 @B3A BEGQ DR&6A IF NO

P2750 20841A @B3Z 17 @zBE @D43 DR&6AA LBSR REWRTE FREE UP BUFFER

B276@ BOB4ZA BB35 CC FFFF A LDD #EFFFF MARK INVALID SECTOR IN BUFFER
2770 0BB43A OB38 20 09 2B43 BRA DR&RB

Q2780 00B44A BB3A AL 63 A DRb&A LDA 5.8 R/W OPTION

82790 BOB45A OB3C 85 @8 A BITA H#NOW REWRITE NOW?

22800 BBB46A DR3IE 26 F2 eB3z2 BNE DR6AA IF YES

2zB10 0BB47A BB4D EC c8 2B A LDD DCBREAsU LAST SECTOR ACCESSED

22820 20848A BB43 ED c8 29 A DR6&B STD DCBPRNsU MARK WHICH SECTOR IS NOW IN BUFFER
22832 DBB4YT * CHECK FOR NEW DCBMRB

22843 POB50A BB4L EC c8 zZB A LDD DCBRBA: U

92850 QB851A BB4Y 1DA3 (B 14 A CMPD DCBMRBsU

82860 @OBB52A @B4D 25 16 BB&S BCS DR&D IF IN A LOWER SECTOR

02870 BOB33A BB4F 26 28 @839 BNE DR&C IF A HIGHER SECTOR

02880 2@834A OB31 AbL <8 2b A LDA DCBRBA+2s U

22890 B@B55A @BS4 Al c8 16 A CMPA DCBMRB+Zs U

02908 0@856A OR37 25 ac oBLS BCS DR&D IF A LOWER BYTE

82910 BOBS7A @B59 EC c8 B
V2920 0@858A @BSC ED cg 14
22930 0@83%A BB5F AL c8 =D LDA DCBRBA+ZsU
02948 00BLBA QBLZ A7 c8 16 STA DCBMRB+2s U

A DR6C LDD DCBRBASU

A
A
A

82950 B0BL1A DBR&D AL 63 A DR&D LDA 5.8 READ/WRITE OPTION

A
A
7

sTD DCBMRBs U

02968 00862A BRLT7 B4 2z ANDA #UPDATE SHOULD RBA & LRN BE RESET TO STARTING VALUE?
02970 0BBL3A BBLT 35 32 PULS AsXsY

22980 BBBLLA DBLB 27 @A eB7 BE® DR&E IF NO

82990 BR8LS # RESTORE ORIGINAL POINTERS

PAGE

R3200
03010
23020
030830
83040
P3050
Q2850
23072
Q3080
03290
031020
03110
03120
03130
B3149
23158
83160
83170
23180
83198
a3ze0
83210
03220
23230
@3240
03250
Q3260
83270
@3280
03290
23300
P3310
3320
83330
03340
83350
83360
a337e
3380
23390
23400
03410
83420
23430
83440
83450
83460
83470
23480
83492
23500
03510
P3520
83530
B354
83350
B3560
23370

816 10

208664
28847A
@0868A
008694
BOB70A
2e871
’as7z
2ag73
0874
o875
@876
0B877A
e2878
288794
208804
28881A
a0882A
29883A
@2e884A
20885
Ba88s6A
oes874A
@0888A
20889A
@892
ona91
oos9z
20893A
Ba874A
BaB8I5A
oR8agse
228974
0a878A
B0897A
2D708A
07814
2070zA
22783
P304
80925
2a706A
BR9B7A
o708A
BO2@9A
28718A
209114
087124
829134
287144
B@?15A
28714A
RBOP17A
20918
207919
80920
BBIz1A
aeezz
209234

@esDd
OR70
@873
aB77
BB79

BR78

@B7D
o880
eBBZ
2884
@BBsL
eB8s

288A
@BsC
2B8E

0B98 =z

Rz
B4
BEI&

Bros
eBoB
2B%D
BB9F
2BA1
BBALG

@BAsL
BEAT
@BAD
BBAF
eeBz
@BR4
eee7
BBRY
@BBC

@BBE 2

BRCO
@BC3

BBCS

BRCc7

.5A:

A7
AF
10AF
&6F
33

26

Ab
84
26

EC
26
86
z@a
17
z6

AE

]

c8 2b A
c8 zB A
c8 ZE A
E4 A
BZ A
1) A
cg i@ A
a8 @BBA
QE A
b4 A
E4 A
BZ A
E4 A
@4 oB9z
61 A
Fz @EB4
64 A
21 A
RE BBASL
cg 11 A
24 @BAl
14 A
E3 28B4
2iB3 @D57
DE @884
c8 2B A
c8 29 A
11 28Ca
@191 @D43
Do oBB4
B1EZ OD99
ce QEB4
2128 @BCE7
Cé6 B84
25 BECS
BiDC @DFF
BF e84
26 A
<8 2E A

DOS - I/0 ROUTINES

STA

8TX

8TY
DR&E CLR

PULS
*

DCBRBA+2,U

DCBRBAS U
DCBLRNs U

5

AsX1YsPC

L e R R R e R S e X S 2 et
* SETUP FOR READ OR WRITE

* GIVEN: A=1 FOR READ»

2 FOR WRITE

* B=ERR NBR FOR POSSIBLE USE
L Yy s

RDWR PSHS

D

* I8 FILE OPEN?

LDA
BNE
LDA
RDWRER LEAS
STA
PULS

DCBCFSsU

RDWR1
#ERR14
445

s 8

AsXsYsPC

SAVE IN CASE NEEDED

IF YES
IF NOT OPEN
(DIDN’T NEED IT AND RET ADDR)

* IS THIS TYPE OF OPERATION ALLOWED (READ OR WRITE)?

RDWRI RITA
BNE
LDA
BRA

18
RDWRZ
1,8
RDWRER

{1 FOR READ» 2 FOR WRITE
IF YES
(ERROR NUMBER PROVIDED)

*
* CHECK FOR STARTING RBA
* I8 I/0 BY RBA OR LOGICAL RECORD?

RDWRZ LDA
ANDA
BNE

* READ BY RECORD NUMBER

LDD
BNE
LDA
BRA
RDWR3 LBSR
BNE

OPT
* MAKE SURE
RDWR4 LDD
CMPD
BE®
LBSR
BNE
LBSR
BNE
LBSR
BNE
BRA
RDWR4A LBSR
BNE

455
#RBA
RDWR4

OPTION PROVIDED

IF READ VIA RBA:; USE RBA'S CURRENT CONTENTS

DCBRSZsU FIXED OR VARIABLE LENGTH RECORDS?

RDWR3

#ERRZQ
RDWRER
CALRBA
RDWRER

L

IF FIXED LENGTH
CANT CALCULATE - RSZ = ZERO

CALCULATE RECORD’S STARTING RBA
IF OVERFLOW OCCURRED

STARTING RECORD IS IN BUFFER
DCBRBAsU (RELATIVE RECORD NEEDED)
DCBPRNsU 15 NEEDED RECORD IN BUFFER?

RDWR4A
REWRTE
RDWRER
CALSEC
RDWRER
DSKRED
RDWRER
RDWRS

CSENT

RDWRER

IF YES

REWRITE BUFFER IF IT HAS BEEN MODIFIED
IF 1/0 ERROR IN THE PROCESS

CALCULATE TRACK & SECTOR

IF TRYING TO GO BEYOND EOF

READ THE SECTOR

IF 1/0 ERR

CHECK FOR EOF
IF TRYING TO GO PAST EOF

*
* CORRECT STARTING BECTOR IS IN BUFFER
* GET SET TO XFER RECORD

RDWRS PULS
OPT
LDX

DsY
NOL

DCBL.RNs U

{D=1/@s ERR NBRs Y = RETURN ADDR)

EJASM

PAGE

23580
835992
234500
03610
03628
Q3630
83640
834650
Q36460
83678
83680
23690
23700
23710
23728
23738
83740
23750
83760
Q3770
23780
@a379e
23802
23810
23820
23830
83840
83850
23840
e3s87@
03880
23890
83700
@391i@
83920
239308
@83940
@3958
23960
a397@
83980
23992
04209
24810
84020
840230
04040
240850
248560
40702
24089
24070
04100
P411@
04120
24130
24140
041508

817 IO

2B924A
PR7Z5A
BOFZ6A
RRFZ7A
B728A
0B7ZTA
2B938A
2@731A
PBF3IZA
PRF33A
@0734A
2B935A
28936
or937
02938
28939
20740
28941
20942
@743
28944
28745
BOTF4S
o747
28748
@B749
20950
20951
20952A
@2953A
PB954A
80955
2956
Ba957
2AF5BA
BB759A
20968A
227614
BOF62A
2B8763A
QBI64A
209654
PB766A
BOPLTA
20768A
PB769A
Qo704
PB971A
BBP7zA
20973A
QBI74A
BAF75A
776A
RI77A
28978A
BRF79A
20980A
@981A

RBCA
BBCC
@BcE
2BD1
@BD4
@eD7
@BD7
PBDC
BBDE
BBEB
@BE3
BBRE7

@BREB
@BEA
@BED

BBEF
@BRF2
BEF3
BBF 6
PBF8
BBFA
BBFC
BBFF
aco1
aCo4s
Bcos
acay
acec
@aCcoF
ec1z
C14
@Ci6
@acis
BCiA
@cLDp
aciF
aczt
acz4
@aczs

.8A:

34
38
AF
AE
Ab
34
EC
34
34
AE
1BAE
39

34
cc
8D

Eb
4F
AE
30
AL
A7
6C
26
17
Z4
EC
c3
ED

27
A7
35
17
26
86
A7
EC
27

]

10 A
"3} A
c8 ZE A
c8 2B A
€8 2D A
1z A
<8 11 A
Q6 A
z2@ A
c8 24 A
cg 27)
32 A
®z15 A
8C BR7B
c8 zD A
8 = A
8B A
AQ A
84 A
c8 =D A
23 BCz4
@BESL OCEA
BE acla
c8 2B A
o021 A
c8 =B A
2187 @D%9
86 bC1aA
&7 A
E4 A
Bz

BACA BCE7
F3 BCi4
21 A
c8 3@ A
E4 A
(=4 ac31

DOS - 1/0 ROUTINES

PSHS X SAVE IN CASE POINTERS DON'T ADVANCE
LEAX 19X POINT TO NEXT RECORD

STX DCBLRNU

LDX DCBRRBASU

LDA DCBRBA+Zs U

PSHS A X SAVE INCASE POINTERS DON’T ADVANCE
LDD DCBRSZsU GET RECORD LENGTH

PSHS D SAVE AS COUNT DOWN VALUE FOR LOOP
PSHS Y SAVE RET ADDR

LDX DCBBUF:+U ADDR OF BUFFER

LDY DCBLRBsU ADDR OF LOGICAL RECORD BUFFER

RTS RETURN TCO READ OR WRITE LOOP
*
693U I6 I I I I I I I I A6 I 26 I I I I KT I I I NI I TN IE I I J T I KT IHIIIE RN RN
WRITE A LOGICAL DISK RECORD

GIVEN: U -> DCB (THAT HAS ALREADY BEEN OPENED!)
A = FUNCTION DESIRED CODED AS FOLLOWS:

BIT @ ON TO WRITE VIA RBA

OFF TO WRITE VIA LRN
BIT 1 ON TO WRITE WITHOUT CHANGING POINTER

OFF TO EXIT AFTER POINTING AT NEXT (PREVIOUS) RECORD
BIT 2 ON TO WRITE BACKWARDS

OFF TO WRITE FORWARD
BIT 3 ON TO RELEASE BUFFER AFTER WRITE

OFF TGO WAIT UNTIL PHYSICAL 1/0 IS NECESSARY
NOTE: FUNCTION IS NEARLY THE SAME AS DREAD - SEE NOTES UNDER DREAD.
P e Xy R e e s S s s s d
DWRITE PSHS AsXsY
LDD #40200+ERRZ1
BBR RDWR DO SETUP COMMON TO READ AND WRITE

* & ok % ok ok ok k Kk k Kk kK %k

*

* LOOP TO XFER BYTES FROM RECORD AREA

* (X->*BUFFERs Y->RECORD AREA}

DW3 LDE DCRBRBA+2Z:U DISPLACEMENT IN CURRENT SECTOR

CLRA

LDX DCRBBUFsU ADDR OF BUFFER

LEAX DX DETERMINE ADDR IN BUFFER
LDA 1Y+ GET BYTE FROM RECORD AREA
STA » X STORE IN BUFFER

INC DCBRBA+ZsU ADVANCE POINTER IN BUFFER
BNE DWse IF IN SAME SECTOR

LBSR DSKWRT REWRITE SECTOR

BNE DW5SAA IF 1/0 ERROR

LDD DCBRBAsU

ADDD #1 POINT TO NEXT SECTOR

STD DCBRBAsU

LBSR CALSEC RECALCULATE TRACK & SECTOR

BE® DW5A IF OK
DWSAA LEAS 78 SCRAP STUFF IN STACK
8TA » 8

PULS AsXsYsPC
DW3A LBSR DSKRED
BNE DW3AA IF I/0 ERROR

LDA #1
5TA DCBMDTsU MARK NEW REC AS MODIFIED
DW3E LDD 28 GET COUNT DOWN VALUE

BE@ DWSC IF VARIABLE LENGTH STRING

EDIASM

EDIASM

PAGE

84160
R4179
@4180
04199
04208
04210
@4220
24230
B4240
84250
4260
B4270
24280
24290
24300
843192
84320
84330
84340
04350
@430
04370
24380
oes1s
000za
ooa3e
20240
28032
20860
2207
2080
82090
cei102
201190
20120
@130
20140
28150
20162
@172
20180
20192
02200
oezie
20220
eaz30
22240
@250
00260
20z70
og2ed
9250
22300
20310
20320
02330
00340
22350

218 IO

RB782A
2a983A
29844
BA?8IA
20986A
227874
299884
20989
2a992
207%1A
B802792A
28793A
994
209935
02996
29797
02998
@999
21000A
B10B1A
@a1e82A
01033A
210044
21045
21006
ei1ee7
21008
21809
@110
21011
21012
@31813A
210144
B1013A
01016A
@1817A
01018A
21219
01020
21821
Qi1ez2
21023
@1B244A
210254
@1826A
B1827A
21028
010294
210304
B10831A
01832A
21933
210344
218354
21036A
818374
210384
21039

@cza
aczh
@czD
BCzF
BC31
aC34
@C36

acas
BC3A
@c3D

@C40
B8C43
BCa4é6
8ca9
BC4A

BC4B
BC4E
@cs51
2Ca3
ac54
8C56

@acs7
acs9
@C5R
@c3D

@C5F
RC&1
BCe3
@C6S

8cs7
BC69
acseB
BC6C
BCoE

.5A:0
83 @001
ED E4

26 CD

28 @7

As CB 13
Al IF

26 B7

86 o1

A7 €8 3@
7E @B29
17 o100
CC FFFF
ED €8 29
4F

a9

8E @7¢8
A6 CB 21
C6 45

3D

2@ BB

39

34 56

6 20
8D @A

35 Db

34 56

c6 2@

8D DA

35 De

A6 CB

A7 B0

sA

26 F9

39

A
BBEF
ac3s

A

A
@BEF

@D43
A
A

ace7

DOS - I/0 ROUTINES

SuUBD #1
STD '8
BNE DW5 GO GET ANOTHER CHR
BRA DWé
DW5C LDA DCBTRMsU STRING DELIMITER
CMPA -1sY WAS LAST CHR STORED A DELIMITER?
BNE DW5 IF NOs KEEP GOING

*

* RECORD HAS BEEN WRITTEN -~ CLEAN UP

DWé& LDA #1
STaA DCBMDTSU ENSURE THIS SECTOR GETS REWRITTEN (EVETUALLY)
JMP RDWRX CLEAN UP GSAME AS FOR READ

*

L e s e e e e ey

* RELEASE THE I/0 BUFFER

* (USED WHEN USER WANTS TO CONTROL SHARED BRUFFER)

* GIVEN: U->DCB

By R e S e e

DRELSE LBSR REWRTE REWRITE BUFFER CONTENTS IF NECESSARY
LDD #$FFFF
87D DCBPRNsU FORCE READ NEXT TIME

CLRA

RTS

OFT L

TTL DOS — SUPPORTING SUBROUTINES
OPT NOL

B e R S e S 2

* POINT "X* AT FAT TABLE IN MEMORY

* GIVEN: U-> DCB CONTAINING DCBDRV

#* RETURNED:X

By L s]

ADRFAT LDX #FATS FAT TABLE STORE AREA
LDA DCBDRVsU DRIVE CONTAINING FILE

LDB #69 NUMBER OF BYTES SAVED
MUL
LEAX DsX POINT TO CORRECT AREA
RTS

*
FAEIE NI IEIETE I IEAEIETE I ITEI I I TN T NI IEH NI I F AT IR IR
* X FER BYTES ROUTINES
R I I TN I IE NI TE I IEIE I I TE NI IE I TN IEIE I I IR N
* XFER 32 BYTES FROM DCB (AT sU) TO DIRECTORY (AT sX)
DCBDIR PSHS DsXaU
Lbge #3Z2 BYTES TO XFER
BSR XFRUX
PULS D:XsUsPC
* XFER 32 BYTES FROM DIRECTORY AT X TO DCB AT U
DIRDCB PSHS Dy XU
LDBE #32
BSR XFRXU
PULS DsXsUsPC
* TRANSFER B BYTES FROM +U TO 4 X
XFRUX LDA sU+

8TA s X+
DECB

BNE XFRUX
RTS

* TRANSFER B BYTES FROM »X TO »U

EJiA=SM

PAGE

PA360
22370
00380
22398
20400
00410
20420
04382
20440
20450
004560
PR470
22480
00490
20508
2@51@
20520
22530
20549
82550
20560
20570
00580
20590
20600
20610
8620
2as632
0640
BBL50
20660
20672
204680
BR650
ea7e0
22710
2720
22730
80742
22732
Ba760@
0772
22780
20792
20802
o812
eesze
00830
22840
eesso
28860
82870
20880
22890
00702
20910
0728
20938

@19 RTN

01840A
B1041A
01042A
218434
21044

21845

21046

21047

21248

81049

Q1058

21051

21052

21053

210254

218554
@10856A
@1057A
21058A
21859

810604
218614
@1862A
01063A
210644
210654
B1066A
@10567A
210684
8104694
@1070A
21871A
210724
21073A
21874A
a1e75

210764
210774
@1278A
B1079A
10804
@1281a
218824
218834
@1084A
21085A
@1086A
ei1e87

@1088A
210894
210924
21071A
21292A
21093A
B1074A
B1875A
01076A
218974

QCHLF
ec71
@ac73
RC73

@c76
ac78
ac7e
@ac7e

Bc81
acB4
8c8s
aces
acse
BCBE
acqe
acoz
BCI5
ace7
acee
acoe
BCD
BCAD
Blaz

@aCA4
BCA7
@CA?
acAB
BCAE
oCcRe
ecez
8B4
BCR6
aces
acBA

BCBC
BCBE
@cce
BCCZ
BLC3
@CCs
@accy
B8CCy
@CCA
acce

.S5A:2

1E
8D
1E
39

34
cc
A7
E7

Bb
34
86
B?
17
35
27
F7
81
26
A7
35
17
26
20

F7
86
A7
8E
6D
27
v
27
2A
&F
35

Ab
27

5F
Ab
Al
26
5C
C1
25

13
Fi
13

(1]

1183
c8 zz2
€8 23

P62z
2z
22
0622
2099
04
12
B622
21
04
E4
86
287
F7
23

@622
28
61
246C8
E4
BA
84
ez
18
E4
86

84
1@
1F

85
Cc3
@7

2B
F5

A
acs67
A

>>P>>» >

>

@cDe

acbe
@CE1

@cDe

@ce3

DOS - SUPPORTING SUBROUTINES

XFRXU EXG XaU
BSR XFRUX
EXG XsU
RTS
*
B O S S S S e S I el 2
% CHECK DIRECTORY ON THIS DRIVE
* GIVEN: A=ZERO IF LOOKING FOR A MATCH

* A NOT ZERO IF LOOKING FOR AVAILABLE SLOT

* U -> DCB

* RETURNED: A=ZERO IF REQUEST SUCCESSFUL

* A=FF IF NO MATCH FOQUND

* A=1-8 IF 1/0 ERROR

* IF SUCCESSFULsX~-> DIRECTORY ENTRY IN BUFFER
A BTN IE I 6T I I I I IEIE I T TN
CHKDIR PSHS D SAVE OPTION

L.DD #$1103

8TA DCBTRKsU SET TO READ DIRECTORY TRACK

sTB DCBSECsU SET TO READ FIRST DIRECTORY ENTRIES
% RETRY ONLY IF DRIVE IS READY!
CD1 LbA >RETRYS

PSHS A

LDA #2 *% CHANGED IN VER & %%

STA >RETRYS

LBSR SYSRED DO PHYSICAL READ

PULS B GET ORIG NBR OF RETRYS
BEQ CDh2 IF 170 OK

sTB *RETRYS

CMPA #ERR1 DRIVE NOT READY?

BNE CD1A IF 1 SHOULD TRY SOME MORE

CDIE STA [R:]
PULS DsPC
CDiA LBSR 8YSRED GO TRY SOME MORE
ENE CDiE IF STILL ERRCR
BRA CDZA
* CHECK THE DIRECTORY ENTRIES IN THIS RECORD
chz sTB >RETRYS

CDZ2A LDA 48 NUMBER COF DIRECTORY ENTRYS PER REC
8TA 1,8
LDX #SYSBUF POINT AT SYSTEM BUFFER
€Dn3 T8T (R} OPTION?
BE@ ¢D5 IF LOOKING FOR A MATCH
LDA 1 X LOOK AT 18T BYTE
BE®@ CDh4 IF 1 FOUND RE-USABLE SPACE
BPL cD7 IF NOT USEABLE
CD4 CLR s§
PULS Da.PC RETURN SUCCESSFULLY
* COMPARE L.OOP
€Ds L.DA s X LOOK AT 18T BYTE OF DIRECTORY ENTRY
BE® CDh7 IF DELETED ENTRY
BMI cn8 IF END OF DIRECTORY ENTRIES
CLRB CHARACTER POSITION COUNTER
CDhé LDA Bs X CHR IN DIRECTORY FILE NAME
CMPA BsU CHR IN DCB FILE NAME
BNE cD7 IF NOT A MATCH
INCB
CMPB #11 MORE CHARACTERS TO COMPARE?
BCS Ché IF YES

EDIASM

PAGE

20740
23950
20762
oR97a
28980
22992
@1000
P101@
oi10zae
21038
21040
f1@250
21268
P1070
21080
01890
21100
p111@
01120
21130
81140
21150
@1160
21170
21180
81150
21200
@1z10
21220
21230
81240
21250
Biz60
B1270
21280
2129a
21300
P1310
21320
21330
21340
81359
Q13602
21370
81380
01392
81400
21410
21420
01430
21449
81450
1460
21470
21480
214990
21500
ei151@

2zB8 RTN

21098
218994
21100
Q11014
B11@2A
21183A
@1104A
211054
@11864A
21187A
2118
211894
211104
@1111A
81112
21113
21114
281115
B1116
B1117
21118
21119
11204
@1121A
B11z2
81123
01124
21125
B11z26
B1127A
@1128A
B11294
21130
21131
@113z
21133
@1134
@1135
811346
21137
21138
81139
211484
Bi1141A
@1142A
B1143A
B11444
211434
Q1146A
B1147A
011484
B1149A
211504
@1151A
B1152A
@1133A
@11544
B1155A

@CCE

acDe
@cD3
BCD5
acb7
BCDA
@CDD
@CDF

aCEL
BCE3
@CES

@CE7
ACEY

ACEA
BCEC
@CEF

BCFz
BCF4
@CF7
BCFA
BCFC
BCFF
2Dpa1
@Das
[r)el". 1.3
ones
@pey
oDoB
@Dap
@DoF
D12
@Diz

.SA:0
2B EB
36 88 20
6A b1
z6 D7
&C (B 23
A6 CB 3
Bt @¢
@5 AD
86 FF
A7 E4
35 86
86 @z
8C
86 @3
A7 C8 2@
&F (8 38
34 14
BE COR&
EC CB 2@
ED 81
EC C8 22
ED 81
EC (8B 24
ED 81
34 @8
4F
1F 8B
8D 1@
35 08
4F
E6 84
27 @7

»r P>

1]
o
-
PO

>

aniB

DOS - SUPPORTING SUBROUTINES

* MATCH FOUND

BRA Ch4

*

cD7 LEAX 321X POINT TO NEXT DIRECTORY ENTRY
DEC 1.8 MORE ENTRIES TO LOOK AT IN THIS REC?
BNE cD3 IF YES

INC DCRSECsU

LDA DCBSEC,U

CMPA #12 MORE DIRECTORY RECORDS TO READ?

BCS <Dl IF YES
* DIRECTORY ENTRY NOT FOUND ON THIS DRIVE
cD8 L.DA #EFF

85TA '8

PULS Dy PC
*
T R R S e
PHYSICAL DISK READ
GIVEN: U->DCB
FUNCTION: READ INTO DCEBUF

(NOTE:DSKCON RETRYS ON ERROR 5 TIMES)

RETURNED:DCBOK = RESULT CODE (ALSO IN A)
BT I IE AT I IEIE T I I NI I TN
DSKRED LDA #zZ READ SECTOR OP CODE

FCa +8C SKIP OVER NEXT INSTR

* ok ok Kk

*

*
EX XTSI TS L LS LSS S S L 2]
* PHYSICAL DISK WRITE
* ESSENTIALLY SAME AS ABOVE
EE 2T 2T IS S 2SS sttt
DSKWRT LDA #3 WRITE OP CODE
DSKIO STA DCBOPCsU
CLR DCBMDTs U
* FALL THRU
*
36369696 2696 J 369696 2969696 3 3696 I 3690 46 3 23626 X 6
* CALL DSKCON
* GIVEN:PARAMETERS IN DCB
* FUNCTION: XFER PARAMS TO [CO@61
* CALL DSKCON
* MOVE RESULT CODE TO DCB
* LEAVE RESULT CODE IN A
3636 I 3636 9 3 3 96 96 I I I I ¥ I I I S N I I I 66 W
XFRIOP PSHS BsX
LDX >$C0Bs
LDD DCBOPCs U
STD 3 X++
LD DCBTRKs U

STD » X4+
DD DCBBUFsU
8TD 3 X++
XIOENT PSHS ppP
CLRA
TFR AyDP
BSR DGIO DO 1/0
PULS DP
CLRA
Loe 3 X GET RESULT CODE
BEQ X10X IF NO ERRORs EXIT

EDIASM

PAGE

21520
91530
21540
21550
21560
81578
81580
21590
216002
Q1610
214620
01630
Q1640
01650
01660
B1670
21480
01690
21700
217190
81720
01730
01740
81750
B1760
01772
01780
81750
01800
01810
a18z0
21830
21840
21850
21860
gis7@
01889
v1890
215900
R191@
B1920
21230
01740
@195@
819460
@i97@
21980
81992
22000
02010
ozaza
22030
02040
02058
zR6B
Pza70
22080
22099

@z1 RTN

21156
@11574A
21158A
R1159A
011604
B1161A
B1162A
@1163
81164
B11634
B1166A
@1147A
@1168A
01169
21170
81171
21172
1173
011744
@A11734A
B1176A
@1177A
21178A
B1179A
011804
211814
211824
01183A
@1184
21183
01186
01187
211884
211894
21192
B1191
21192
81193
21194
21195
21196
Q1197
211984
11994
21200A
212014
812024
D1203A
B1204A
B12@54
B1206A
Q12874
21208
21209
@1z10
21211
B1212
@1213A

@D14
@D15
@D17
@pia
@D1iA
@D1iR

@D1D
@D1F
@Dz
@Dz5

anz7
enzy
anze
@DZE
@Dn31
@D33
8D3&6
@D38
@D3B
@D3D

@D3F
@D41

@D43
BD4&
@aD48
@D49
@D4A
@D4D
RD4F
@p31
BD53
@D55

aD37

.5A10

s8

25 03

4C

28 FA

4C

35 94
2024

34 76

B6 8622

BE COD4

E 04

B @2

34 14

E6 €8 21

BE 2@

ED 81

EC B 2%

ED 81

cC @sc8

ED 81

@ 7

86 @3

20 E&

4D B 38

26 Bz

4F

39

A6 B 1B

84 @z

27 F7

8D 4C

26 F4

e 93

34 70

@D1A

@D14

A

>>Pr> D

>

@pa

2Dze

@D4A

BD48
BDIF
BD49
BCEA

DOS - SUPPORTING SUBROUTINES

* GENERATE ERROR NUMBER BASED ON WHICH RIT IS ON

XI0A

XI0B
XI0X
F 4

LSLB I8 THIS BIT SET?
BCS XIOB IF YES ’

INCA

BRA XI10A

INCA

PULS BaXsPC
EQU ERR1+ERRZ+ERRI+ERR4+ERR5+ERRG6+ERR7+ERRS

* THE ABOVE LINE SIMPLY PUTS ERR1~8 ON THE XREF MAP

DOIO

*

PSHS DsXsYsU
LDA >*RETRYS
LDX >6C004
JMP 41X

F AT NI AT IEN I K I NI TN IHK N
* PHYSICAL DISK READ — SYSTEM FUNCTIONS

* SAME AS DSKRED EXCEPT SYSTEM’S BUFFER USED
E R e T e e
SYSRED LDA #2

SYSIO

*

PSHS Bs X

LDE DCBDRVsU

LDX >$CBAs

8TD 2 X++

LDD DCBTRKs U

STD) X4+ TRACK & SECTOR
LDD #SYSBUF

STD 3 X4+

BRA XIOENT FINISH UP LIKE USER I0Q

F K WA F K FE I I I I I I A 26 I IE I I I I IR

* PHYSICAL DISK WRITE - SYSTEM FUNCTIONS
F KA NEAE I I I I AT I I NN

SYSWRT LDA #3

*

BRA SYsI0

FIE KA KT I I T I AU AE I TN IO K I I TN I IETETE I IETE I T I 2063696 336 T 1 I 36 I 3606 2606 9 2 X056
* IF DATA IN BUFFER HAS BEEN MODIFIED (DCBMDT NOT = @) CHECK

* TO SEE IF WRITES ARE ALLOWED. IF NOs DO NOT SET ERROR - JUST EXIT.

* IF YES» REWRITE BLOCK IN BUFFER (EXIT WITH ERROR IN A IF WRITE NO GOOD.)
*

*

GIVEN: U->DCB CONTAINING DCBPRN = PHYSICAL REC NUMBER THAT IS IN BUFFER.

FA I AT T TEI I NTE K I I T I I I FEAE AT IE T T A6 36961696 TE 1696 6T 6 I A6 9696 I 26
REWRTE TST DCBMDT,U DATA IN BUFFER MODIFIED?

RWX
RWXX
RW1

*

BNE RW1 IF YES

CL.RA

RTS

LDA DCBCFSsV

ANDA #OUT ARE WRITES ALLOWED?

BE®@ RWX IF NOs EXIT WITH NGO ERROR

BSR CSENT RE~ESTABL.IGH TRK & SEC FROM PRN
BNE RWXX IF NGs. EXIT WITH ERROR

BRA DSKWRT GO DO REWRITE & RETURN TO CALLER

R S e e T
* CALCULATE RELATIVE BYTE ADDRESS FROM LOGICAL RECORD NUMBER
* (DCBRBA = DCBRSZ * DCBLRN)

LR e R A R 2 A T T P YIS T A
CALRBA PSHS XsYsU

EDTASM

PAGE

2z100
ozi1@
02120
82130
02140
02150
02160
82170
R2188
02190
2zz00
82210
QzZ220
B22308
0zz4@
02250
82260
8z2z70
22280
02299
02300
02310
02320
12330
22340
Q2350
223602
82370
22380
02392
Q2400
82410
2420
22430
R2440
@2450
02460
22470
02480
82490
082500
22510
22520
82530
22540
22550
82560
82570
22580
@z590
82600
@az2610
82620
22630
02640
02450
02660
B@2670

@22 RTN

B12144A
B1215A
BizieAa
@1217A
Q12184
012194
21220A
012214
B1z22A
@1223A
@1224A
Q1225A
@1226A
B1227A
B1228A
12294
@1230A
@31231A
21232A
21233A
B1234A
@1235A
B1236A
B1237A
@1238A
212394
@124DA
Bi1243A
012424
01243A
Biz44A
21245A
B1246A
@1247

21248

Q1249

01239

81251

21232

21253

21254

01255

@1256

@1257

21258A
@1259A
01268A
B1261A
@1262A
@1263A
D1iz264A
B1263A
B1266A
B1267A
D1268A
212694
212704
81271A

QD39
@DsC
@D5F
@Ds2
@D&4
@b&s
D68
@D6A
@Dec
@Ds&h
@D&F
@D71
D73
@D74
8076
@8D78
@D7aA
aDp7C
@D7E
@D7F
@psi
@Ds3
@p8s
oDs7
an8?
oD8A
aD8c
@D8E
@D?e
@D%1
@p93
@Dp93
@D97

@DI9
oDIC
@DFF
@DAl
@DA3
@DAs
BDAY
BDAB
@DAC
BDAE
BDE1
@De3
@DB5
@DB8

.8A:0

30 c8 2B A
31 8 11 A
33 8 2E A
6bF B84 A
6F B1 A
6F .4 A
Ab 21 A
Eé 41 A
3D

ED 81 A
Ab 21 A
Eb C4 A
3D

E3 84)
23 iD @DI5
ED 84 A
Ab A4 A
E& 41 A
3D

E3 84 A
23 1z @an9s
ED B84 A
Ab A4 A
E& C4 A
3D

EB 84 A
23 a7 D95
E7 B84 A
4D

26 Rz @Da95
35 FO@ A
86 1@ A
33 Fe A
EC <8 28 A
ED €8 29 A
Ab 4D A
34 12 A
8E @7¢c8 A
Ab €8 21 A
Cé6 43 A
3D

30 8B A
EC c8 29 A
6D E4 A
28 15 @aDncAa
83 aeas A
25 1B QDD

DOS - SUPPORTING SUBROUTINES

LEAX
LEAY
LEAU
CLR
CLR
CLR
LDA
LDB
MUL
STD
LDA
LDB
MUL
ADDD
BCS
STD
LDA
LpB
MUL
ADDD
BCS
8TD
LDaA
LDg
MUL
ADDB
BCS
sTR
TSTA
BNE
PULS
CRBAER LDA
PULS
*

DCBRBASU
DCBRSZ. U
DCBLRNs U
s X

1.X

25X

1sY

1:U

1:X
11Y
v

s X

CRBAER IF CARRY
s X

sY

1:U

s X
CRBAER
o X
1Y
sU

2 X
CRBAER
X

CRBAER
XsYsUsPC
#ERR16
XsYsUsPC

36936 96 96 3696 96 36 3606 36 36 96 96 6 JE 96 3696 36 36 3696 3696 696 963 36 3016 960 36 9636 336 36 36363606 36 36 96 0696 6 46K N N

* %k %k k Kk Kk %k XK

CALCULATE TRACK & BECTOR

GIVEN: DCBPRN = RELATIVE RECORD NUMBER
FUNCTION: FOLLOW CLUSTER CHAIN UNTIL PROPER CLUSTER FOUND
RESULT: DCBTRK & DCBSEC IF RECORD IN RANGE
THEY POINT TO LAST SECTOR IF NOT IN RANGE.
A = ZERO IF SUCCESSFUL

NON ZERO IF NOT

FE A6 9606 I 96 316 36 06 I A6 I 664696 I 9616365 969636 9006 96 96 96 96 6 90 96 3 69696 96963636 366 96 96 96 36 6

CALSEC LDD
STD

CSENT LDA
PSHS
LDX
LDA
LDB
MUL
LEAX
LDD
TST
BMI

csi1 SUBD
BCS

DCBRBAsU DESIRED REC NUMBER

DCBPRN:U SAVE AS THE REC IN THE BUFFER
DCBFCL U

AsX

#FATS

DCBDRVs U

#FATSZ

Ds X POINT TO PROPER FAT TABLE
DCBPRNsU REC NUMBER DESIRED

€83 IF AT END OF CLUSTERS (NULL FILE)

CS4 IF IN THIS CLUSTER

PAGE

22680
02690
2700
02710
02720
82738
82740
02750
02750
02770
82780
02792
22800
2z81@
ezaze
02830
22840
82850
R2860
82870
02880
B2890
02908
82710
Q2928
92930
82949
82950
02960
22970
22980
82990
230008
23010
23020
83038
23040
03850
03860
03270
03080
230982
23120
03119
03120
03130
23140
83158
23160
03170
83180
03150
Q3200
03210
23zz0
83230
23248
23z50

223 RTN

21272A
21273A
812744
212754
B1276A
81277A
21278A
@1279A
21280

21281

21282

912834
01284A
21285A
212854
01287A
91288

21289

212904
21291

812924
21293A
812944
812954
21296

21297A
212984
21299A
013004
213014
213024
913834
213044
013054
213064
01307A
21308A
21329A
21310

213114
213124
21313A
P1314A
213154
21316

213174
21318A
B1319A
21328

213214
013224
21323A
213244
813254
01326A
B1327A
213284
813294

@nBa
@DBeC
@DBRE
@pce
@ncz
BDC4
@DCs
@pcs

anca
eDncD
@DCF
@DD1
@DD3

2DD5

@DD7
@DD?
@npB
@apDD

@DDF
@DE1
BDE3
@DES
@DE7
@DEA
@DEC
@DEE
ODF@
@DF2
ADF 4
@DF7
@DF9

BDFB
@DFE
@DFF
QEAZ
PER4

BEBSL
2E®8
PEQA

RERC
BESF
BE11
BE13
RELS
QEL7
RELF
QE1B
RELD

.5A:

34
Ab
Ab
2B
A7
35
Z@
33

Ab
B84
26
86
P

cB

Ab
6D
2A

34

Eb
ca
Et

Eb
C4
26
35
20
26
Ab
84
26

E&
4F
10A3
25
2B

E6
CA
E7

Ab
84
26
8D
27
35
86
A7
33

"]

@6
62
86
86
62
Bé
ED
=13

c8
28
66
11
46

2A

E4
86
44
25

86
3F
61
2B
c8
a8
18
L)
DF
z2B
c8
28
24

c8

4E
18
E8

61
ce
86

c8
Z0
ac
69
@8
]3]
1z
E4
92

a

m

1]
HP>PPDP DD D>

@DF
10

> >

BE@S
@npi1
BELF
1@ A

BELF

RE1F
@DEE

1@ A

DOS - SUPPORTING SUBROUTINES

PGHS D

LDA 28

LDA AsX GET NEXT CLUSTER POINTER
BMI csz IF AT END OF CLUSTERS
STA 218

PULS D

BRA C81

csz PULS D
*
* REC IS BEYOND END OF CURRENT CLUSTERS
* AM I ALLOWED TO ADD ANOTHER CLUSTER?
C83 LDaA DCBCFSsU
ANDA #EXTEND AM 1 ALLOWED?
BNE [91=1-1 IF YES» GO TRY 17T
CS3A DA HERR17 EXTENSION NOT ALLOWED
BRA CSERR
*
* RECORD 1S IN THIS CLUSTER

CS4 ADDR #10 {(RESULT I8 1-9)
* IS THE SECTOR NUMBER IN B IN USE IN THIS CLUSTER YET?
LDA + 8 {CLUSTER NUMBER)
T8T AsX IS THIS CLUSTER THE LAST IN THE FILE?
BPL €83 IF NO
PSHS D CLUSTER NUMBER/SECTOR NUMBER
* 1S THIS RECORD BEYOND CURRENT LAST SECTOR USED?
LDB AsX
ANDB #63 CURRENT LAST SECTOR USED
CMPB 158 THIS ONE)
BCC CS4A IF THIS 15 LESS OR EQUAL TO CURRENT END
LDB DCBCFSsU GET FILE STATUS
ANDEB HEXTEND FILE EXTENSIONS ALLOWED?
BNE CS4B IF YES
CS4AE PULS D
BRA C83A EXTENSION NOT ALLOWED
CS54A BNE CS4C IF NOT IN LAST SECTOR
LDA DCBCFSs U
ANDA HEXTEND ALLOWED?
BENE CS4C IF 178 OK

* IS REC BEYOND LAST BYTE?

LDB DCBRBA+25 1

CLRA

CMPD DCENLSs U

BRCS Cs4C IF OK

BRA CS54AE IF NG
* EXTEND LAST SECTOR IN THIS CLUSTER
C84B LDB 1,8 SECTOR NUMBER

ORB #$CO

STR As X PUT IN FAT TABLE

* FAT HAS CHANGED - CAN I BYPASS UPDATE THIS TIME?
LDA DCBCFSsU

ANDA #FAST

BNE CS54C IF YES

BSR WRTFAT RE-WRITE FAT TABLE TO REFLECT CHANGE
BE® CS4C IF 1/0 WAS OK

PULS D

L.DA #ERR18 FAT RW ERR
CSERR STA 1S
PULS AsXsPC

EDWASM

PAGE

Q3260
@3z70
23280
03292
@33n0
e3312
03328
83330
23340
23350
23360
B3370
@3380
23390
234002
23410
23420
23430
@3440
B3450
@3468
23470
23480
83490
23500
83510
Q3520
B3532
83540
83558
35368
03570
23580
@35390
23600
Q34610
23620
83630
03642
034652
236460
23670
@3s680
035698
83700
03718
@37z20
a3738
@374
23750
@376
3770
23780
23790
3800
238108
23820
a3830

824 RTN

213304
21331

D1332A
B1333A
D1334A
@1335A
01336A
B1337A
@1338A
01339A
B1340A
D1341A
@13424
@1343

B1344

81345

R1346

B1347A
B134BA
Q1349A
B1350A
B1351A
21352

01353A
@1354A
@1355A
@1356A
@1357A
21358A
B1359A
@1342A
@1361A
B1362A
B81363A
B1364A
B1355A
B1366A
@1367A
213684
013694
B13704
213714
@1372A
@1373A
B1374A
213754
B1376A
D1377A
@1378A
B1379A
213804
@21381A
@1382A
21383A
@1384

21383

21386

81387

BELF

PEZ1
BEZ3
@EZ4
QEZ6
BEZ8
REZR
QEZD
PEZF
PE3G
BE33
BE35

@E37
QE3?
BE3R
BE3D
BE3E

RE4D
BE4Z
BE44
PE4E
QE4B
RE4A
BE4C
BEAWE
QESD
RESZ
QES4
BESSE
BESB
@ESA
BESC
BESD
BESF
BES1
BE&3
QE&LS
BES7
PELT
BE&B
PE&LD
QE&F
BE71
BE73
RBE75
@E77
BE79
BE7B

33

a6
44
24
cB
E7
81
25
4c
A7
&F
a5

Eb
26
cé
4F
34

Ab
AR
81
24
Eb

27
Ab
AD
25
E&
Ci
27
Ab
4C
A7
81
25
33
86
20
E6
24
A7

20

Co6
E7
35
35
7E

0L A
E4 A
ez REZ8
@9 A
cg 23 A
11 A
21 @E3@
cg 22 A
E4 A
9z A
E4 A
2 RE3D
22 A
Bb6 A
61 A
E4 A
44 A
@6 RE4E
864 A
FF A
iB BELT
61 A
E4 A
86 BESA
86 A
FF A
oF RE<
E4 A
E4 A
44 A
DD PE4D
Ré A
16 A
BZ QE1B
62 A
B4 BE71
4D
Bz BE73
85 A
ce A
86 A
Bé A
3 A
@D9F A

DOS — SUPPORTING SUBROUTINES

C84C PULS D CONTINUE - IT IS NOW WITHIN RANGE OF FILE
% RECORD IS IN RANGE OF FILE ~ XLATE CLUSTER INTO TRACK & SECTOR
€85 L.DA X1 CLUSTER NUMBER
LSRA 1S THIS AN ODD CLUSTER?
BCC CS5A IF NO
ADDB #9 IF YESs USE SECTORS 10-18
C55A sTB DCRSEC,U
CMPA #17 IS CLUSTER BELOW DIRECTORY?
BCS Cs58 IF YES
INCA IF NOT GO ONE TRACK FARTHER
CS5B STA DCBTRKsU
CLR '8
PULS A X PC
*
¥ TRY TO ADD ANOTHER CLUSTER TO THE FILE
* NEXT CLUSTER USED WILL BE THE CLOSEST ONE TO THE LAST ONE USED BY
% THIS FILE. IF FIRST EVER FOR THIS FILE. IT WILL BE CLOSEST TO MIDDLE.
C&é LDB +8 LAST CLUSTER NUMBER USED
BPL CSéA IF NOT VERY FIRST ASSIGNED TO FILE
Lpe #34 START SEARCH AT CLUSTER 34
C86A CLRA STARTING DISPLACEMENT
PSHS D
* LOOP TO LOOK FOR AN AVAILABLE CLUSTER
cs7 LDA 1.8 LAST CLUSTER OF FILE
ADDA [X-] ADD DISPLACEMENT
CMPA #68 IN RANGE OF TABLE?
BCC CS7A IF NO
LpB A X GET FAT TABLE BYTE
CMPB #$FF 1S IT AVAILABLE
BEQ [#=1=] IF YES
CS74A LbA 198
SUBA 28 LOOK THE OTHER WAY
BCS cs78 IF NOT IN RANGE OF THE TABLE
LDR A X GET FAT TABLE BYTE
CMPBR #5FF AVATLABLE?
BEQ cs8 IF YES
€578 LDA 2]
INCA
STA 28
CMPA #68 HAVE 1 TRIED ALL POSSIBILITIES?
BCS cs7 IF NOT YET
PULS D NORMALIZE STACK

LDA #ERRZZ DISK FULL
BRA CSERR

€8 LpB 2.8 ORIGINAL. ENDING CLUSTER
BPL cs8A
STA DCBFCLsYU THIS 15 FIRST CLUSTER
BRA cesR

CeBA 8TA BsX ADD TO CHAIN

CS8R LDB #4CD SAY NONE OF THESE SECTORS USED
STR AsX
PULS D
PULS As X NORMALIZE STACK

JMP CSENT GO TRY AGAIN FROM THE TOP!
*

* REWRITE FAT TABLE ON DIRECTORY TRACK
*

EDTASM

PAGE

23840
23850
23860
a3870
23880
23890
03700
R3910
239:0
03530
23748
03952
23960
23970
03980
83990
84200
24010
04220
04230
o221
220:za
oP038
22040
20050
202462
02e72
20089
ore9e
23109
02110
20120
22130
283140
3158
20160
oe17a
22180
oe19a
fralvaed
onzie
pezza
P@z3a
02240
222592
DBz6@
20270
00280
azev
20300
20312
20322
Pa330
208340
02358
aB368
01370
203802

@25 RTN

21388

81389

21390

21391A
B1392A
813934
B13944
B1393A
B1396A
@31397A
213984
B1399A
B1400A
0140814
014024
@1403A
@14844A
0140@5A
214864
214B7A
Q1408

@149

Bi1410

21411

Q1412

@1413

Bi414

@1415

B1416A
14174
B141B8A
B1419A
B14206A
@1421A
B1422A
@1423A
D1424A
@1425A
B1426A
Q14274
B1428A
014294
R1430A
B14314
D1432A
@1433A
B14344
B1433A
@1436A
@1437

Q14384
B14394
B1440A
B14414
B1442A
B1443A
Bl444A
B14454A

QET7E
BEBS
QEB3
BEBS
REB7
BEBA
BEBC
BESF
RE?1
BEZ3
QEFS
RER7
BE98
PERA
BEE
PEAD
BEAZ

DEAS
BEA7
PEAS
BEAB
BEAD
BEAF
BEB1
BER3
QEBS
BEB7
PERS
BEBB
@EBD
BEBF
BECH
PEC3
BECS
PEC7?
PECT
PECR
PECD

BECF
BEDS
BEDS
BEDB
REDC
BEDF
BEEZ
QEES

-8A:0

34
BE
86
A7
AL
A7
cc
ED
EC
ED
34
4F
1F
AD
35

33

7E

4D
27
AD
7E
cC
FD
39

9F Ced4

o
-
>>»>P>p>» D>IP>PP>PB>DB>DD

@ECF
@329
B33C
@37t
@3AE
B44@
B329
@asa7
2610
8619
R&22
BLEA
0762
Q7D9
288A
esp1
18984
BA4Q
aces
acat
@D2A

> IPIIITIPID

B4 REDC
9F @616 A
BFF6 A
18AZ A
0623 A

DOS ~ SUPPORTING SUBROUTINES

* GIVEN: X-»> CORRECT FAT TABLE IN MEMORY
* U~> DCB CONTAINING CORRECT DRIVE NUMBER
B T s)

WRTFAT PBHS X
LDX >$C0B6
LDA #3 WRITE
8TA : X+
LDA DCEDRVs U
STA s X+
LDD #41102 TRACK 17s SECTOR 2
STD 2 X++
LDD 18 ADDR OF FAT TABLE
STD s X++
PSHS DP
CLRA
TFR AsDP
JSR [$CAB4] DO I0
PULS DP
LDA s X RESULT
PULS XsPC

TTL DOS —~ PAGING & OVERLAYS
*
FE I WA IEIE TN I TEIET TN TN T I I TN IE I IEIEIEAE I I I I 3639696696 3606 0696 2
% ON DIBK, THIS PROGRAM BEGINS HERE! EVERY THING THAT PRECEEDS THIS POINT
* IS RECORDED ON DISK AFTER THE END OF THE OVERLAYS. WHEN DOS 1S FIRST
* LOADED INTO MEMORYs THE ROUTINE CALLED "OVRLAY® SHIFTS THOSE ROUTINES
* DOWN TO THEIR PROPER PLACE.
Ra s R e s 2 T
alelc] JMP DOS1 JUMP OVER DISPLACEMENTS TO OVERLAYS

FDB B1-DOS

FDB BZ-DOS

FDB B3-DOS

Fpe B4-DOS

FDB B3-DOS

FDR B&6~DOS

FDB B7-DOS

FDB BB-DOS

FDB B9-DOS

FDB B1@-DOS

FDE B11-D0OS

FDR B12-D0OS

FD& B13-D0OS

FDB B14-DOS

FDB B15-D0S

FDB B16-DOS

FpB B17-DOS

FDB B18-D0OS

FDB B19-DOS

FDB BZ@-D0OS
* MINIMUM INITIALIZATION FOLLOWS
DOS1 DOS DO INIT GO INITIALIZE (MENU ETC)

TSTA

BE® DOSZ2

JSR LERROR]
DOSZ JMP OBASIC
DOS3 L.DD #OVRLAY

STD >OLYLOC

RTS

EJiASM

PAGE

2a37e
20402
0410
2420
2e43a
00448
20450
20450
20470
@482
BB490
20500
20510
80520
20530
82549
22550
20560
oas7a
22380
28599
20600
28619
0as20
20630
02640
28650
824640
20670
20480
80692
22780
oB71a
RO722
@730
20740
208758
BB76@
2e772
00780
22790
22800
22810
208z0
22839
208492
20850
20860
o870
@880
22852
20700
20910
Ba720
BR732
20740
20952
RB76@

8z6 ML

B1446
81447
81448
@1449
21459
21451
B1452
81453
B1454
B1455A
@1456A
B1457A
B1458A
14594
B1460A
@14614A
B14624
B1463A
01464A
B1465A
B1466A
B1467A
B14684
014694
214704
01471A
B1472A
B1473A
B14744A
@1475A
@14746
B1477A
21478A
B1479A
21480A
B1481A
214824
214834
B14844A
014854
B1486A
@1487
21488
21489
21499
01491
B01492A
@B1493A
B1494A
@B1493A
01496A
Q14974
B1498A
B1499A
21500
@1581
@150z
21583

@EE6
QEES
QEER
BEEC
BEEE
OEF@
BEFZ
REF4
REFS
BEFB
QEF9
REFB
BEFD
REFF
BF e
@rai
@F Bz
2F@a3
@F®s5
@F07
BF B9

BFoR
@F@eD
OF10
OF12
QF13
@F15
@F18
@F 1B
@F1D
@F1F

oFz0
oFz2
oF23
2F 25
orz8
aFzA
@FzC
@F ZF

-5A:0

34
RO
44
24

35
34

AL
5F
8D
c6
34
5F
44
59
5%
an
oA
26
35

Cé
F7

4F
3s
F7
BE
30

39

34
4D
27
FC
ED
33
FF
35

16 A
FFz2 A
24 @EF2Z
21 A
?6 A
21 A
61 A
1A @F15
28 A
B4 A
10 @F15
E4 A
Fé BEFF
24 A
ez A
FFz@ A
21 A
96 A
FF20 A
@623 A
iF A
FC BF 1B
46 A
ac @F31
212D A
41 A
43 A
@18D A
o} A

DOS - PAGING & OVERLAYS

*
FRT I IEIET T TN T I I T I AT I TN I I T I I KB I H R
8 BIT PRINTER DRIVER
GIVEN: A=CHR TO BE SBENT TO PRINTER
RETURNED:A IN TACT

CC = Z CONDITION IF SENT OK

CC = NON-Z IF PRINTER NOT READY -~ TRY AGAIN
I I KT I T I IEIE I NI RTINS NN
% I8 PRINTER READY?

* ok Kk K

DPRNT PSHS PsX
LDA >U4BDR
LSRA
BCC DP1 IF READY
LDA #1 SET NON-Z CONDITION
PULS DsXsPC
DP1 PSHS cC SAVE INTERUPT STATUS
DSABLI NO INTERUPTS DURING HARD LOOP TIMING
L.DA 1:8 CHR TO SEND
CLRB
BSR LPEND SEND START BIT
LDB #8 BITS TO SEND
PSHS B LOOP COUNTER
DP2 CLRB
LSRA
ROLB
ROLB
BSR LPEND SEND THE BIT
DEC 8
BNE DRz G0 BACK FOR NEXT BIT
PULS B
* INITIATE STOP BIT (IT CONTINUES UNTIL PRINTER S5AYS "READY”)
LDE #2
sSTB >*U4ADR
PULS cC RESTORE INTERUPT STATUS
CLRA SET ZERO CONDITION CODES
PULS Ds Xs PC
LPSND §&TB >U4ADR LATCH BIT TO QUTPUT
LDX >RATE TIME CONSTANT FOR TRANSMISSION
LPDLP LEAX —-1sX
BNE L.PDLP
RTS

*
HA N T I I T2 I I TN I AT I T T KT H AN N
* TURN ON OR OFF A TIME DRIVEN ROUTINE
* GIVEN: U-»> START OF ROUTINE THAT FOLLOWS SPECS
E e e e e S e 2 e L L]
DTMEON PSHS DsU

TSTA RE@ FOR ON OR OFF7?

BE® DTMEOF IF OFF

LDD >IRQ+1
8TD 1,U
LEAU RIRV

STV >1RG+1

PULS DsUsPC
*
L R e e e]
* TURN OFF A TIME DRIVEN ROUTINE
* GIVEN: U -> START OF ROUTINE

PAGE

29770
20982
209902
210002
21210
¢1020
21230
810408
2105
21060
01078
elio80
21070
21108
21110
01128
21130
01140
21150
21160
21170
21180
81150
21200
21210
21220
21232
B1240
21250
81260
21278
pizea
21290
21300
21318
01320
21330
213402
21350
21360
81370
21382
21392
21400
21410
B1420
21430
21440
81450
B1460
@147@
@148@
81490
@152
g151@
21320
215302
21540

Bz7 ML

21504

21505A
@1586A
B1507A
B1508A
B1509A
@1510A
B1511A
@1512A
@1513A
@15144A
215134
B1516A
B1517A
21518

81519

015204
215214
@1522A
@1523A
B1524

81525

@81526

01327

01528A
B1529A
015304
B1531A
21532A
@1533A
@1534A
81535

21536

21537

21528

@1539

21540

01541

B1542A
B1543A
B15444A
@15454A
B1346A
215474
01548A
B1349A
Q1550A
B1351A
@15524
B1553A
B15544
@15554A
B1536A
@1557A
B1558A
B1359A
QA1560A
B1561A

@F31
@F33
@F35
@F38
BF3A
@F3D
BF 3F
@F 41
BF43
@F 45
BF47
@F 49
@F4B

OF 4D
BF 4F
@F51
@F53

OF55
@F38
RF5B
BFSE
@F 61
BF &2
AF &4

BF &6
BF &8
RF 6B
@F&D
@F&F
@F71
BF72
@F 74
RF 76
@F78
BF7A
BF7C
@F7E
aree
@FB3
@F85
BF8s8
BF8A
oF8C
BFBE

.5A:0

33
34
CE
AE
8cC
27
AC
27
iF
33
z@
35
33

AE
AF
35
35

7€
FC

FD
4F
1F
28

8A
BE
Al
27
34
4D
zB
8D
ze
8D
33
335
8E
34
BE

34
30
34

43
58
21@D

@F58
A
62
2A
a3
5E
EF
5@
Cé

1E
Ca
ae
c6

[=17]
@625
iF
11
@4

B4
5C
1)
45
2z
84
24
OF 7R
1@
B625
Qz
1@
1E
14

>>>>

or7a
RFD2
BF7E

PP DDD

DOS -~ PAGING & OVERLAYS

WA W I I B I NI NI NN

DTMEOF LEAU 3sU ADDR STORED IN CHAIN
PSHS X U
LDU #IRQ+1

bDTO LDX (Y LOOK AT ADDR OF NEXT ROUTINE
CMPX #B8TDTME 1S IT END OF CHAIN?
REQ DTOZ IF YESs GET QOUT
CMPX 218 IS IT THE ONE SOUGHT?
BEQ DTO3 IF YES
TFR DsU
LEAU -2+U
BRA DTO

DTOZ PULS X:U
PULLS DsUsPC
* X POINTING AT DESIRED ROUTINE
* U POINTING AT WHERE THAT POINTER CAME FROM

DTO3 LDX ~21 X GET ADDR THAT DESIRED ROUTINE POINTS TO
STX [AY UNLINK HIS ROUTINE
PULS XU

PULS DsU-PC
*
B3I I I I I I I K I I I WK eI R I I Fe I NI I 6 I I I 36 I 636 I I IE I IE I I 36 I I I 6NN
* STANDARD TIME ROUTINE ~ LINKED IN BY INITIAL START UP ROUTINE
F6 36 U3 I I I I I I I I I K W6 WK JE NI R TN NN R RAR
STMX JMP >0
STDTME LDD >CLOCK

INCD

8TD >CLOCK

CLRA

TFR AsDP ENSURE ROM ROUTINE USES PAGE ZERO

BRA STMX
*
FT I NI I I T I I I I NI T I I IIIH I T I I T I I IR
* CALL A BYSTEM OVERLAY (OR UBER OVERLAY)
* GIVEN: OVERLAY NUMBER IN "A"
* OVERLAY IS LOADED IF NOT PRESENT IN MEMORY
* NOTE: X IS NOT PRESERVED -~ USED FOR OVERLAY BASE ADDRESS
FIEK I I T I AT I TN I I T I T I I IE I I T HN
USROLY ORA #$80

SYSOLY LDX >OLYLOC POINT AT CURRENT OVERLAY LOAD AREA
CMPA -1.X IS THE DESIRED OVERLAY ALREADY THERE?
BEQ 8SYSO3 IF YES
PSHS B
TSTA SYSTEM OR USER?
BMI 8Ysol IF USER

BSR 8SYSLOD LOAD THE OVERLAY
BRA 5YS0Z
8Ys01 BSR USRLOD LOAD THE OVERLAY
BE@ sYS02 IF OK
PULS BsPC IF L.OAD ERROR
8Y802 PULS B
8YS03 LDX #8Y504 WHERE TO GO ON THE WAY BACK FROM THE OVERLAY

PSHS X

LDX >OLYLOC OVERLAY LOAD AREA

LEAX 21X ENTRY POINT WITHIN OVERLAY

PSHS X

LEAX -2 X PROVIDE USER WITH HIS BASE ADDRESS
PGHS BaX

PAGE

@1550
81560
81570
Q1580
@a157e
21602
21619
01620
@146302
01642
01650
21660
81670
21688
81690
@1700
01710
21720
@1730
21740
21750
@176@
R177@
21780
817908
21800
21810
21820
81832
21840
21850
21860
1870
21880
21892
21780
01910
21928
21930
B1740
21930
21968
21978
21980
21990
g vl
02219
ragedraed
2339
@2D40
Bz050
Bz@60
0za70
0z080
Bzov0
@2100
22119
Rzize

228 ML

D156Z2A
@1363A
B1564A
@1565A
D1566A
@1367

01568

01369A
Q15704
@1371A
Bi1572A
B1573A
@1374A
Q15754
B1576A
81577

21578

81579

21580

@1581

@138z

@1583A
B1584A
215854
021586A
81587A
81588A
@1589A
@1592

@1591

@1592

21593

@154

P1593A
B1596A
@1597A
215984
B1399A
D1608A
B16B1A
B1602A
216034
B16044
B16@34
P16B6A
B16A7A
016084
21689

01619

21611

21612

B1613A
Bi614A
B16154A
Bl616A
B1617A
R1618A
216194

RF 20
@F9z
BF 94
BF 96
BF99

oFoB
@reD
BFAD
BFAZ
QF A4
QF A9
BF AR
BF AE

BFRa
@FBZ
BFB4
QFBS
@re8
RFRE
BFBD

OFBF
@FC1
BFC3
@FC7
@F CA
BFCC
@FCE
@FD0
@FD2
BFD4
@FD8
@FDB
@FDD
@FDF

@FE1L
BFE4
QFE7
BFES?
@FEC
@FEF
@FF1

.BA:

EC
30
38
BF
33

34
BE
30
EC

30
BF
33

8A
34
EC
ED
CcC
ED
33

8A
34
1@8E

8D
27
86
33
34
1@8E
CE
8D
2é
35

8E
CE
Co
17
CE
Cé
17

"]

84
8B
@3
Bb25
4

17
@625
1D
84

8B
@625
97

8@
1
b4
62
BF &8
b4
86

80
60
@627
2697
74
az
17
E®
6@
BEAS
@633
&9
ez
E@

24020
108D
18

FC78
2408
Fa

FC73

>P>>>D>

>>>» DD

>

12446
FEL
A

>>>

B8Cse7

> >

BC67

DOS ~ PAGING & OVERLAYS

L.BbD » X GET SIZE OF OVERLAY

LEAX DiX POINT TO END OF OVERLAY

LEAX 39X POINT TO BASE OF NEXT OVERLAY AREA
STX >OLYLOC

PULS Bs X2 PC BASE ADDR (OF OVERLAY

*
* ON THE WAY BACKs ADJUST oOLYLOC
8YS04 PSHS CCsDs X

LDX >OLYLOC

LEAX -3 X

LbD X GET SIZE OF THIS OVERLAY

NEGD

LEAX DsX POINT AT BEGINNING OF OVERLAY I AM EXITING
8TX »OLYLOC SAVE 1T

PULS CCsDs X3 PC
*
6 I I NI I I NI IE I I 6T T I IE KT IR I IEI I NI I I T I T KN
* RETURN FROM ONE OVERLAY & XFER CONTROL TO ANOTHER
* GIVEN: STACK NORMALIZED AS IF READY TO RTS FROM AN QVERLAY
* A = DESIRED OVERLAY NUMBER
A AT NI 3606 I T T I IE TN T I AN I IEN IR I T IE TN
DUSRGO ORA #$80

DGO PSHS D SAVE D
LDD 438 (RET ADDR TO 85YS04)
8TD 218
LDD #SYS0LY CAUSE "RETURN" TO SYSOLY AFTER “"UNDQING"
STD 418
PULS DsPC RETURNS TO GYS04

*
P T R R S R e L
* LOAD A SYSTEM OVERLAY (OR USER OVERLAY)
* GIVEN: A = OVERLAY NUMBER
A N J I NI 6 I I T I KT
USRLOD ORA #$80
PSHS YsU
LDy >USRBSE
LDU #USRDCRB
BSR PAGEIN LOAD THE OVERLAY
BEG SLDX IF LOADED OK
LDA #ERRZ3
SLDX PULS YsUsPC
SYSL.OD PSHS YU
LDY #DOS+1 LOC OF OVERLAY’S RBA TABLE IN MEMORY
LDy #DOSDCB POINT AT SYSTEM®S DCB
BSR PAGEIN LOAD THE OVERLAY
BNE ABORT IF SYSTEM FAILURE
PULS YsUsPC
*
9 I I I I IE I I TN I I IEIE I N IR
* FATAL ERROR OCCURRED IN DOS - CAN’T PROCEED
BN BTN IEIE ST I IE I I N T I TN IE NN
ABORT LDX #5400 viD
LDU #ABTMEG
LDRB #16
LBSR XFRUX
Lbu #5400
LDB #256-16
LBSR XFRUX

PAGE

22138
22140
B2150
82162
22170
82180
82190
22200
@:2z10
[nred
02238
2240
0z258
02260
@z279
22280
0zz99
02300
22313
22320
22330
22340
02350
02360
22370
02380
B2390@
22400
22410
Q2420
B2430
22440
02450
2469
Q2470
82480
B2490
82300
P2510
02520
22530
B2340
02350
22560
02570
02580
02598
Q2600
02618
026208
R2630
Bz2640
Q2650
826460
Bz670
22680
2690
Bz7002

Qze ML

B162BA
B1621A
016224
B1623A
D16244A
B16Z3A
D1626A
P1627A
016284
B1629A
B1630A
B1631A
@1632
@1633
01634
214635
21636
B15637A
Q16384
B16394
B1640A
Di641A
B1642A
B1643A
D16444A
B1645A
B1646A
B15647A
B1648A
B1649A
B14650
01651
Bi1652
P1653
B1654A
016554
B1656A
B1657
@1658
@14659
214660
B1661
B1662
Q1663
B1664
@1665
B16664A
16674
816684
B15669A
D1670A
Q1671A
B1&6724
B1673A
BL1674A
B14754
B1676A
016774

OFF4
QFF&
OFF7
BFF9
@FFD
1008
1086
1009
180D
1013
1014
181B

181D
181F
1821
1223
1826
182A
102D
192F
1231
1033
1835
1@39
1@a3e

183C
183E
1844

1844
1049
1048
104D
1@4F
1058
1831
1853
1856
1859
1@5¢C
1@5F

. SAs

8D
4D
27
18CE
BD

7F
3

1F
86
34
cC
188E
CE
ao
33
iF
8D

27
39

34
35

BE
A7
1F
C4
58
4F
EC
c3
&F
ED
ce
ED

2

3F 1035
@D 1086
2400 A
@EDF A
2871 A
9F FFFE A
53 A
60 A
44 A
6060 A
879 A
[} A
’& A
203z A
2045 A
2Ll] A
@D 183C
1) A
Rz A
a7 183C
FA 1835
66 A
E& A
625 A
1F A
89 A
7F A
AR A
oS A
B ZB A
€8 2C A
eanz A
c8 11 A

DOS — PAGING & OVERLAYS

BSR DERR WAIT FOR A KEYSTROKE
OBASIC TSTA
BEQ OBaAG1
LDbs #HETACK
JBR DOS3 RESET STACK & OLYLOC
DOS DO MENU
OBAS1 CLR 471
JMP [$FFFE]
ABTMSG FCC /SYSTEM/
FCR %68
FCC /FAILURE/
FDEB $6B60

*
R I IR SR Sy e T e)
* USER ABRORT ROUTINE

#* GIVEN: ERROR NUMBER IN A

L g g)

DERROR TFR AsE
LDA #1 (ADD 256 TQ IT)
PSHS D SAVE FOR LATER
LDD #50 START OF INSTRUCTIONS
LDY #69 END OF INSTRUCTIONS
LDy #0 CLEAR SCREEN FIRST
B8R DOMAP GIVE INSTRUCTIONS
PULS D
TFR DY
BSR DOMAP DISPLAY ERROR

DERR SYSTEM POLCAT WAIT FOR ANY KEYSTROKE
BEQ@ DERR
RTS

*

F I NI TN NN IR
* DO MAP DISPLAY FUNCTION
H NI I

DOMAP PSHS DsYsU
DOS DO+ MAP
PULS D:YsUsPC

*

F A6 T T I KA IE I AT I I I 6T I I I 636 TN I T I I I I

* L OAD [¢]
*

VERLAY ROUTINE

* GIVEN: A=0VERLAY NUMBER
* U~-> PROGRAM DCE
* Y-> TABLE CONTAINING RBA’S OF OVERLAYS
* THE FILE MUST HAVE PREVIOUSLY BEEN OPENED!
A NI TN IEH AT AN IE NI I I I T I TN I I T I 6T NI AT 36 090606 0660636063696 96 36069696
PAGEIN LDX >QLYLOC
5TA -1sX
TFR AsB
ANDB #$7F
LSLEB 2 BYTES PER VECTOR
CLRA
LDD DsY GET RBA OF START OF OVERLAY
ADDD #5 ADJUST TO RBA WITHIN DISK FILE
CLR DCBRBAsU
STD DCBRBA+14U
LDD #2 LENGTH OF A SIZE FIELD
8TD DCBRSZsU SET TO READ 2z BYTES

EDASM

PAGE

02710
2720
0z73@
02740
@82750
82760
@z77a
82780
2z797a
02800
2z810
228z
0z830
22840
22859
02860
@z870
82880
2z89@
22900
22710
22920
22932
02940
02950
B2960@
@297
az982
8297902
23000
830210
23020
a3e32
23240
23058
230608
@307@
R3280
23090
23100
23110
83120
23138
03142
23150
03160
23170
03180
2319508
83200
23210
@3zz0
23230
83240
83250
@32608
!3z7a
23280

238 ML

016784
B1679A
@15804
016814
216824
016834
D1684A
816854
D1686A
B1687A
016884
B1589A
216904
016914
D1692A
16934
B1694A
P1695A
B1696A
B1697A
091698A
16994
01700
21701
91702
21703
21704
217054
B1706A
@1707A
01728
17094
21710
21711
Q1712
21713
81714
01715
21716
81717
21718
01719
21720
21721A
01722A
017234
B1724A
21725A
B1726A
81727A
91728
817294
P1730A
21731A
21732A
21733
017347
217354

1062
1065
1068
1268
1@6D
18&F
1872
1@75
1077
1879
1978
187E
1081
1083
1084
1085
1088
108D
188F
189z
1094
1995

1996
109C
109F

10a1

18AZ
1@A3
10A8
10AC
10AE
10B2
1082

10R4
1087
10BA
1eec

128F.
1@¢3

.5A:

AF
cC
ED
8D
38
EC
AF
30
ED
&F

ED
ap
4F
39

27
3z
BE
&F
4D
39

AE
iF

8E
CE
1@BE
Ab
A7
31
26

CE
8E
Cé
BD

1@CE
BE

ce 27
FFFF
c8 29

18 1@8
oz
D8 27
c8
8B
1E
84
2002
c8 11

@z 1@8

]
~
U»>>PP>>>>UDDD>

28 1095
62 A
@625 A
84 A

c8 27 A
15 A

21" A

1BD@
2989
@518

8@

ce

3F

F8 10A

2600
1104
c8

BCLF

2400
210D

P> PP OIPD>DDIPD

DOS ~ PAGING & OVERLAYS

8TX DCBLRBsU

LDD #$FFFF

STDh DCBPRNsU FORCE INITIAL PHYSICAL READ

BSR PIRD

LEAX 29X

LDD [DCBLREBsU] LENGTH OF ROUTINE (INCLUDING SIZE WORD)
8TX DCBLRBsU WHERE REST OF (OVERLAY GOES

LEAX Ds X POINT TO END OF OVERLAY + 2
8TD =2sX SAVE HIS S8IZE AT END

CLR * X SAY NO VALID OVERLAYS FOLLOW
sueDd #2 S1ZE OF THE REST

STD DCBRSZsU SAVE AS RECORD SIZE
BSR PIRD
CLRA
RTS
PIRD DOS READs RRA
BEQ@ PIERX

LEAS 248 BYPASS RET ADDR

PIERR LDX >OLYLOC
CLR s X SAY THIS OVERLAY DOSN’T EXIST IN MEMORY
TETA SET COND CODES

PIERX RTS

*

By ey s s S e d e
* MINIMUM LOGIC TO LOAD & PASS CONTROL TO USER PROGRAM
* JUMP HERE FROM OVERLAY 1Z
e R S R R s s R S e R e e a st
B1zA DOSs READs RBA READ IN THE ROOT SEGMENT
LDX DCBLRE:U BASE OF PROGRAM
TFR XsPC JUMP TO ROOT
*
FcB "] PLACE WHERE NUMBER OF 15T OVERLAY LOADED GOES
*
BT NI NI I I F T 26 I T I TN IE I T IEIEEIE I KT I IEIE I I I I IE NI IE I I TN NI I K
* OVERLAY SECTION FOLLOWS
* AlLL SECTIONS THAT FOLLOW ARE RELOCATABLE.
* (THE FIRST OVERLAY IS LOADED AT THIS ADDRESS)
I3 K363 IE I T I I T I I TE TN IEAEIETE T T KT I A WA I I T I I I I I TN

*

THE FOLLOWING ROUTINE SIMPLY SHIFTS PART OF DOS DOWN TO %989. IT
* IS5 LOADED AFTER THE END OF THE REST OF THE PGM S0 AS TO PREVENT

* CONFLICTS WITH BASIC.

* IT IS CLOBBERED WHEN FIRST OVERLAY IS LOADED!

(o]

VRLAY LDX #LASTPG

LDU #$989

LDY #DOS-0RGIN AMOUNT OF PGM TO XFER
OVL.P LDA s X+

STA U+

LEAY =1sY

BNE OVLP
* INITIALIZE VECTORS AT $600
LDU #4600
LDX #VECINI
LDe HENDVEC~VECINI
JSR XFRXU MOVE IT TO $600
* FROM THIS POINT ONs VECTORS AT $688 MAY BE USED
LDS #STACK
LDX >IR@+1 VECTOR TO DISK ROM TIME ROUTINE

E

PAGE

@3290
23300
83310
83328
Q3339
83340
83350
23360
@337
23360
03398
23400
03410
03420
834302
83440
@345a
03440
83470
23480
83490
23500
23510
@35z0
@353@
03540
R3558
R3568
83570
23580
03590
23420
83610@
03620
23630
36402
Q36508
B366@
a3s72
23480
03698
37002
23710
23728
23730
3740
23758
03760
23770
23780
237902
03800
23810
23828
23830
23840
23850
B3840

231 ML

B1736A
B1737A
B31738A
Q1739A
@17404A
@1741A
Q1742

B1743A
B1744A
B17435A
B1746A
@1747A
B1748A
Q17494
B1750A
B1751A
@1732A
B1753A
B1754A
@1735A
817564
@1757A
21758

B1739A
@1760A
B1761A
@1762A
B1763A
@1764A
P1765A
017664
01767A
B1768A
B17469A
B1770A
@1771A
B1772A
@1773A
@1774A
R1773A
B1776A
@1777A
B1778A
B1779A
Q17804
217814
217824
@1783A
@1784A
@1785A
21786

21787A
81788A
@1789A
01790A
@1791A
01792A
B1793A

18Cs
1ac8
1ece
1@8CE
1@D4
1@D7

1@DA
{@DD
10DF
10EQ@
10E2
10E4
10Es
1BES
1@EC
1BEE
19F1
10F 4
19F8
1OFB
11e1

1124
1106
1108
118A
118C
110E
1110
1112
1114
1116
1118
111A
111C
111E
1120
1122
1124
1126
1127
1129
1128
112D
112F
1131
1133
1135
1137

1139
1144
114D
1139
115D
115F
1160

. 8A:

38
BF
CE

FC
FD

8E
Ab
43
A7
Al
27
B8E
BF
86
B7
CE
12CE
BD

7E

']

@3
218D
@F55

ADRD
B61C

7FFF
84

84
84
@3
3FFF
@8DC
B4
@8DE
@635
2400
BEDF

BEAL

0989
BASZ2
BAEZ
@BES
BC40
@F 68
BFB2Z
RFDZ
BF 66
@FBQ
@FBF
101D
@Fz

\BEE6

[0
@FF&
2000
23

20AE
10AZ
oaae
@633
0633
8633
8633
@633
3939

44
00
00
o0
osC8

06C8

10E

>>»>r2>2>»>90>>» > D> D>PD>DP

>PPP>P>P>DP> PP D

DOS - PAGING & OVERLAYS

LEAX S5sX

8TX >IRG+1
Lbu #STMX
DOS TIME, ON
LoD *POLCAT
8TD SKREYIN

* DETERMINE MEMORY SIZE
LDX #ETFFF
LDA X
COMA
8TA 1 X
CMPA s X
BEQ OVLP1
LDX #$3FFF

OVLPL 8TX *MAXMEM
L.DA #4
8TA DRIVES
LDy #DOSDCR
LDS #STACK
JSR DOS3
DOS OPENs INPU
JMP DOS

*

VECINI FDR DOPEN
FDB DCLOSE
FDB DREAD
FDB DWRITE
FDB DRELSE
FDhB SYSOLY
FDB DGO
FDB SYSLOD
FDB USROLY
FDB DUSRGO
FDB USRL.OD
FbB DERROR
FDB DTMEON
FDB DPRNT
FDB a
FDBE OBASIC
FDB a
Fee 5
FDB $AE
FDR OVRLAY
FDB 2
FDB& RETURN
FDR RETURN
FDB RETURN
FDB RETURN
FDB RETURN
FDB $3939

* INIT COPY OF DOSDCB
FCC /D0OS
FCB B:0:3:2+0
Fce @:0:0:0.02
FCB Br1$FF.0:0
FDB SYSBUF
FCB ~]

FDB SYSBUF

BYPASS CHECK
STORE REVISED ENTRY POINT

ADDR OF ROM KBD SCAN ROUTINE
SAVE IN KEYIN VECTOR

END OF 32K

IF 32K MACHINE
FOR 16K

MAX NUMBER OF DRIVES

T READ ONLY

POINTER TO OPEN FUNCTION

RELEASE 1/0 BUFFER

CALL SYSTEM OVERLAY

JUMP BETWEEN SYSTEM OVERLAYS
LOAD A SYSTEM OVERLAY

CALL USER OVERLAY

JUMP BETWEEN USER OVERLAYS
LOAD A USER OVERLAY

USER FATAL ERROR EXIT

TIME ROUTINE ON/OFF

8 BIT PRINTER DRIVER

SLOT FOR KEYIN

RETURN TO BASIC

INITIAL CLOCK VALUE
INITIAL RETRY COUNT
PRINTER TIME CONSTANT

L.0AD ADDRESS FOR NEXT OVERLAY
BASE ADDR OF USER PGM + 1
HOOK1

HOOKZ

HOOK3

HOOK4

HOOKS

RETURN CODE FOR HQOKS

BIN/
s0s042.0
13:0:2:@:0-0:0

FOR WHICH INTERUPT IT IS

:

M

EdiASM

PAGE

@3870
83880
23890
a3°00
@371@
23928
23930
03948
R3950
23940
3778
83780
@3990
24200
24010
24020
Q4030
04040
04050
040840
24270
24080
oRo1d
oa0ze
Llri i
22040
20250
80052
20870
020802
avave
20100
20110
20120
20132
20140
80150
28160
22170
22180
28190
22200
20210
Q0Zz20
2ez308
28z40
Raz5@
aBzsd
2az70
22280
22278
20300
20310
Qa3ze
20332
202342
2e352
P2260

232 ML

B1794A
Q1793

B1796A
D1797A
21798A
B1799A
21800A
B1B@A1A
218824
21803A
21804

218054
@1806A
218274
@1808A
218094
818104
01811A
218124
21813

218144
21815

81816

81817

21818

81819

218204
@121

B1822A
218234
218244
Q18254
@1826A
B1827A
01828A
218294
@18304
B1831A
@1832A
R1B33A
218344
218354
@1836A
@1837A
218384
81839A
21840

01841

@1842

01843

@1844A
218454
@1846A
@1847A
@1848A
81849

@21850A
218514

1162

1164
1173
117
118A
118E
1190
1191
1193

1198
11A6
11AF
1iee
1iBF
11C1
11¢2
11Ca

11CC

11CD

11CF
11Dz
11Dé6
11D9
11DC
11DF
11EL
11E3
11E5
11E7
11E?
11EB
11ED
11EF
11F1
11F2
1iF4
11FA

1200
1202
1285
1209
12@cC

12@F
1212

.84

cC
108E
CE
BD

8E
34

"]
1%}

44
20
o0
o0
26c8

2000
[%]"]

20
oa
[2]7]
[2]"]
B6C8

o200
oa

@233

2001
2173}
2006
183C
B697
28
C4
&0
13
(o]
68
ez

88

F3

2ezz
Q200
@225
0eso
1@3C

B&e97
50

> T>>>P>PDPD> D>PBPDP>DPPDPIP >

P> D>

- -
— -
m n
>>T>D>P

11E7

>»>» P>

DOS - PAGING & OVERLAYS

FCB

FCC
FCe
FCB
FCR
FDB
Fce
FDB
FCg

FCC
Fce
FCB
FCe
FDB
FCa
FDB
FCB

*

ENDVEC FCB

*

B:712+90+0:0:2:0
* INIT COPY OF MSGDCB

/D08

B 4FFsB+0

SYSBUF
"]
7]

/

Bs$FF+2:0

SYSBUF
[+]
28

BAS/
B:2:0:2:0:2:0:0:9
0+3:0:0:2+0,0:0:0:0:0:2

(SET WHEN USED)
2:0:0:2:2:8:0,0

* INIT COPY OF USER PGM DCB

BIN/
8:9+0+0:0:2:0+02,0
B:s2:0:0:0:8:0:2:0:0,0.0

B:0:0:8:0:8:0:9

[}

END OF PRESET DATA

LR a2 2 E R T R e S R R e e)
* INITIAL START UP - CHECK FOR AUTO EXECUTE

*

R L R s a
SIZE OF QVERLAY

CLLR SCREEN & IF AUTO

NAME LENGTH
GET 18T CHR FROM SCREEN

IS
IF

GO

G0 DISPLAY MENU & RE-INITIALIZE

IT A BLANK?
YESs NO AUTO FUNCTION

LOAD & EXECUTE PROGRAM

B1 FDB Bz-B1
CHECK FOR AUTC PROGRAM EXECUTION
LDD #$1
LDY #é1
LbuU #$0
JBR DOMAP
LDX #USRDCB
LDB #8
LDA [RY)
CMPA #4660
BEQ MENUQ
STRT1 LDA s U+
CMPA #$60
BCS STRTZ
EORA #4540
S8TRTZ &TA s X+
DECB
BNE STRT1
Dos GOsEXEC
MENU@ DOS GO MENU
*

NI IR F NI I NI I N I N IR IRH RN
? ~ EXECUTE A PROGRAM

* MAIN MENU SELECTION

B I N B 6 I T F I I IE I NI I I IE I W I I IEIE I I NI IR N AR

B2 FDB
LDD
LDy
LDu
JSR

LDX
PSHS

B3-B2
#512
#3549
#0
DOMAP

XsU

SIZE OF OVERLAY
STARTING L INE NUMBER
ENDING NUMBER

EXISTS,

DISPLAY IT

DISPLAY SCREEN FORMAT & GET ADDR OF INPUT FIELD
* NOTE U —-> FIRST INPUT FIELD ON SCREEN
#USRDCB POINT AT DCB

ADDR OF VID AREA & DEST AREA

PAGE

28370
@a380
223908
20402
22410
00420
20430
2044
PR450
20460
20470
20480
PO470@
zasan
02510
20320
25330
20540
20550
02560
oa570
20580
20592
20600
20610
20620
20630
20640
20650
0650
Bas7@
o480
20690
0702
ov718
207:0
Bo73e
D740
BO750
02762
@a772
20780
2802790
oRB20
e0810
[aleiz el
20830
e840
20850
oBBLR
29870
002880
29892
2a500
20710
ae9za
28930
82740

833 QLY

21852A
21853A
218544
81853

@i18s5s&

21857

21858

2185%9A
21868A
18614
D186EA
D1863A
B1B64A
@18465A
B1iBoLLA
B1867A
B184BA
B1869A
01870A
218714
@QiB72A
@1873A
P1874

@1875

218746

21877

218784
21879A
21880A
21881A
@1882A
218834
218844
@18854A
21886A
21887

21888A
218894
218904
21891A
@1892A
21893A
218944
218954
318956A
Q1897A
@18984A
@1899A
21700A
219014
@31902A
21903A
Q1904A
B1985A
01906A
19074
219208A
B19B9A

1214
1214
121C

1222
1224
1227
1224
122D
1231
1233
1236
1239
123A
123E
1244
1246
1248
124C

1252
1234
1257
1258
125E
1261
1262
1264
1267

1269
126D
126F
1271
1274
1276
1278
1274
127D
127F
1282
1284
1286
1289
128C
128E
1291
1293
1297
1299
1298
129D

. SA:

35

FC
83
FD
10BE
34
FD
CE

108E
32

35
1QBF

108E

[}

58

oeza
@8DC
2eBs6
28DC
B&2S
8

RB625
8418

2a7

64
2@
R&25

a9z
@B4s6
@863
00200
103C

DOS ~ PAGING & OVERLAYS

aless)
A PULS
D08

*

DOSFIELDI INPUT A FIELD
XsV
GOsEXEC GO EXECUTE IT

L L e g s et 2 s s
* MAIN MENU SELECTION 3 - TURN ON CLOCK DISPLAY
L2 e S et ey e T S e 2l

B3 Fpe
LDD
SUBD
STD
LDY
P8HS
STD
LDy
CLRB
LDY
DOS
LEAS
PULS
sTY
DOS

>>> P DPPD>PITDPB>DD

*

B4~B3 SIZE OF OVERLAY

MAXMEM

#B14-B13+3 ALLOW ROOM FOR CLOCK ROUTINE
MAXMEM

OLYLOC

Y

oLYLOC

#$400+32-8 DISPLAY AT TOP RIGHT CORNER

#7

DOs REALTM TURN ON DISPLAY
448 NORMALIZE STACK
Y

OLYLOC

GO MENU

LR 22 X 22 S 2 R T SR R T S R R e R X 2T L S T
* MAIN MENU SELECTION 4 — DISPLAY FREE SPACE MAP
L T S e L S L R a2

B4 FDB
L.DD
LDY
LDU
JSR
CLRA
PSHS
LDU
BSR

FREY CMPU
BCC
PSHS
LDX
LDA
LDB
sTD
LDbD
STD
LDD
STD
LDA
STA
JSR
LDA
§TA
PULS
LDY
LDB
LDA

1288 BE®

A FRE3 L.DA

PP PPIPOF NI P>

B3-B4 SIZE

#70 START OF SCREEN FORMAT
#99 END OF FORMAT
#0

DOMAP DISPLAY FORMAT

A (DRIVE COUNTER)
#4400 VID BUFFER
FRES1 FIND STARTING DISPLAY POSN

LOOP ONCE PER DRIVE

BESFF MORE DISPLAY ROOM?

FREX IF NO

U SAVE NEXT DISPLAY ADDRESS
>HCO06 POINT AT PARAMETERS
#2 (READ)

18 (DRIVE)

1+ X4+

#$1102 {TRK 175 8SEC 2)
9 X++

#SYSBUF

3 X++

#2 (ONLY 2 RETRYS)
*RETRYS

DOIO

#5 (RESTORE TO 3)
>RETRYS

U (DISPLAY LOO)
#SYSBUF

#68 LOOP COUNT

s X RESULT

FRES IF OK

#4358 (X)

PAGE

a9sa
209640
02972
0780
22990
Q1000
21010
21020
21830
21040
21050
01060
nia7o
oiese
o190
81100
21110
@1120
21130
21140
21159
01160
eii7e
21180
21190
01200
21210
81220
81230
21240
21250
81260
21270
21280
21290
81300
81310
81322
81330
81340
@135e
01360
21370
91380
81390
01400
21410
81420
21430
B144@
B1450
B1460
21470
21488
Q1490
150Q
215102
01520

@834 OLY

Q19104
B1911A
B1912A
21913A
219144
B1713A
B1916A
B1217A
@19184A
P17919A
219204
01921

B19224
01923A
B1924A
B1925A
@1926A
219274
B1928A
19294
B1930A
21931A
Q19324
81933A
R1734A
019354
81936

21937

819384
219394
819404
BiF41A
B1942A
B1943A
B1744A
B1945A
21946

@1947

21748

@1949

217584
@1951A
@1952A
21953A
019544
B1955A
B1956A
B19574A
219584
019594
217604
81961A
@LF62A
B1963

21964

@1365A
B1966A
B1967A

129F
1zAa1
12A2
12A4
12A6
12A8
12AA
1z2aC
12AF
1281
1287

1288
12BA
12BC
128E
12¢a
12¢C2
12C4
12Cé6
12C8
12CA
12CC
12CE
12CF
12D1

12D3
12D5
12D7
12D9
12DB
12DF
1ZE1
12E3

12E4
12E6
12E8
12ZEA
1318
134C
134F
1353
1356
1359
1358
1361
1363

1365
1368
136A

.5A:

8D
5A
26
&C
Ab

25
BD
33

39

Ab
2B
86
20
81
26
86
z0
84
B8A
8D
54
26
20

A7
Ab
81

1183
26
33
39

34
20

cc
1@8E
CE
BD
Cé6

Ci
27

8E
EE
33

AR
24
58
ac
FF
04
&E
24
oF
78
85

E7
D1

5F
ce
6E

2500
Féa
SF

BREY
10

62

Ba31
2a31
zzé
@257
el
183C
B7

23
5F

0400
E4
44

134C

+$» >r>DDD>D

13C

> D> D>

EdASM

DOS — PAGING & OVERLAYS

BSR FRESET
DECB
BNE FRE3
FRE4 INC 18 DRIVE COUNT
LDA (R
CMPA #4 MORE DRIVES TO GO7
BCS FREL IF YES
FREX J8R DERR WAIT FOR A KEYSTROKE
PULS A
DOS GOs MENU
RTS
* DISPLAY FOR THIS DRIVE
FRES L.DA 1Y+
BMI FRE6 IF PART OR ALL AVAILABLE
LDA #$58 (X)
BRA FRE8
FRE& CMPA #$FF ALL AVAILABLE?
BNE FRE7 IF PART USED
LDA #$6E (PERIOD)
BRA FRES
FRE7 ANDA #$F
ORA #$70
FRES BSR FRESET
DECB
BNE FRES
BRA FRE4 G0 BACK FOR NEXT DRIVE
*
+ STORE CHR ON SCREEN & FIND NEXT DISPLAY POSN
FRESET STA -1syY
FRES1 LDA sU+
CMPA #HES6E PERIOD?
BE® FRESX
CMPU #4600 END OF SCREEN?
BNE FRES1 IF NO
LEAU -1sU
FRESX RTS
*

F s s 2]
* MAIN MENU SELECTION 5 -~ COPY FILES
F O L S e e

B3

BSDCB1
B3DCRBZ
B5A

*

83J

FDB B&-B3 SIZE OF OVERLAY
PSHS X
BRA BHA
RMB DCBSZ
RMB DCBSZ
LDD #5509 START OF FORMAT
LDY #3599 END OF FORMAT
LDU #@ CLEAR SCREEN FIRST
JSR DOMAP DISPLAY SCREEN
Lpg #7
DOS DO INPTS
CMPB #BREAK
BE® BSX
* ENTER PUSHED SET UP DCBS
LDX #$400
Lpu 1S BASE ADDR
LEAU BSDCB1-B5,U POINT AT SOURCE DCB

PAGE

91530
B1540
@1350
21560
21570
21580
8159Q
21600
21610
01620
B1630
81640
B14650
01660
21670
21680
21490
@1700
21710
01720
8173
Q1740
217508
01760
21770
21780
021790
21800
21810
P1820
01830
01840
21850
01840
21870
21880
21890
a1900
21910
81929
21930
21940
21950
01960
Q1970
01980
21990
ozeos
2z010
ozezo
02032
02040
22050
22060
eza7e
22080
0z090
22100

235

01946BA
B19694
@19708A
B1971A
81972

219734
B1974A
217754
Q1976A
@1977A
01978A
R1979A
819804
219814
21982A
219834
B1984A
B1985A
B1986A
019874
21788A
217894
B1990A
B1971A
B1992ZA
B1993A
B1994A
B1993A
B1996A
Q19974
81998

B1999A
B2000A
BzZOB1A
20024
B2003A
0z004A
B2025A
D20a6A
Bz2087A
D200BA
B2009A
Bz@104A
ozB11A
02012

02013A
@ZB14A
BZ@15A
oz0146

@z017

0zoi8

Bze19

@z02BA
B20Z1A
B2022A
B2023A
B20244
020254

OLY

136C
136E
1371
1373

1375
1377
1379
1378
137D
137F
1381
1383
1385
1387
1389
1388
138E
138F
1391
1393
1395
1396
1398
137A
139¢C
139
13A8
13A1
13A3

13A4
13A6
13A8
13AA
13AC
13AE
138
13B2
13B4
1387
13BD
13BE
13Ce

13C4
13C6
13CC

13CD
13CF
1303
13D5
13D7
13D9

.5A:0

8D @7 1375
33 cB 3t A
8D Bz 1375
20 2F 13A4
8D i8 138F
Co6 o8 A
31 C4 A
8D 19 13946
8D 1@ 138F
31 48 A
cs 23 A
8D 11 1396
8D es 138F
Ab 84 A
B80 7@ A
A7 c8 21 A
39
Ab 80 A
81 5B A
26 FA 138F
39
Ab 80 A
81 60 A
25 ez 139E
80 40 A
A7 AQ A
5A
26 F3 1396
39
8D E? 138F
E6 84 A
Cci 39 A
27 B4 1380
C1 4E A
26 14 13C4
AE E4 A
33 26 A
31 88 37 A
4D
27 24 13C4
AD 9F D616 A
33 10 A
39

2@DE A
30 89 CADA A
34 i@ A
20 2D 1404

oe A

20 A

DOS ~ PAGING & OVERLAYS

BSR
LEAU
BSR
BRA
* SETUP A DCB
B5K BER
Lpe
LEAY
BSR
BSR
LEAY
LDB
BSR
BBR
LDA
SUBA
STA
RTS
LDA
CMPA
BNE
RTS
LDA
CMPA
BCS
SuBA
STA
DECB
BNE
RTS

BITAB

BIMOV

BSMOVL

B3L BSR
Lpg
CMPB
BEQ
CMPB
BNE
LDX
LEAU
LEAY
DOS
TSTA
BEGQ
JGR

B5M

*
B5X PULS
DOS
RTS8
*

B3K

B3K
B5L

B5TABR

#8

[y

BSMOV
B5TAB
DCEBFEX U
#3

BIMOV
B5TAR

X

#4702
DCBDRVU

(ZERO)

s X+
#ESE
BSTAB

s X+
#4460
B3IMOVE
HE40

s Y+

B5MOV

B5TAB
X
#$59 Y
B5M

#$4E N
B5X

[R:] BASE
BSDCB1-BSs X
B5DCBZ-B5s X
DO COPY

TO Y/N

B5X
LERROR2

X
GO MENY

FEA6 I I 3 J I 2 I I 96 36 I I I I I W6 I W WK H

* DISPLAY SELECTED DIRECTORY LIST
LR 2 e 22 2R e Ry g I e T

Bé& FbB
LEAX
PSHS
BRA
FiB

FCC

B&ARG

B7-B&
B6ARG-B&s X
X

B&A

17"

7/

SET UP SOURCE DCB
DCRSZ.U POINT AT DEST DCB

MOVE EXTENTION

EJIASM

PAGE

2z110
82120
22132
Bz140
22150
82160
0z170
0180
02190
Q2200
@:x210
02220
Q2230
02240
82250
82260
ez2z70
22280
022909
02300
0z310
0z320
02330
82348
22358
22350
@z370
02380
82390
2400
82410
82420
02430
02440
@2450
02440
22478
82480
82470
22500
P2510
82520
22530
22540
22550
82560
@z2572
ez580
82590
@2600
2610
22620
22630
02640
82650
az2660
B2670
02680

@36

BzPZ6A
BZAZ7A
Rz@zBA
BZB29A
B2R30A
22031

@zA3zA
Bz@33A
Bz@34

Qza354A
B2@346A
BZO3I7A
B2838A
BzB39A
020404
BzD414A
BZB42A
DZR43A
B2D44A
B2843A
Q2R46A
BzZB47A
AzB4BA
B2049A
2ze50

020514
20524
Qz053A
220544
D2055A
Q20564
B2857A
Bz@584A
20594
@206BA
B2861A
B2RLZA
Dz063A
Q2B64A
BZBL5A
B2066A
BZBLTA
B2068A
QZDEIA
B2070A
B2O71

B2D72A
R20734A
BzO74A
@zB75A
QZ076A
Bz@77A
02078A
Q28794
2ze8@

02814
QzR8zA
220834

oLy

13E4
1404
1407
1408
140E

1411
1413

1419
1418
141D
1420
1422
1424
1426
1428
142A
142C
142E
1430
1432
1434
1436

1438
143A
143C
143E
1448
1442
1445
1447
144A
144C
1452
1453
1455
14357
145D
145F
1461
1463
1465
1467

14469
144
146D
146F
1471
1473
1475
1476

1478
1474
147D

. 5A:

CcC
108E
CE
BD

Cé

EE
33
BE
8D
o}
=i}
8D
Cé
8D
8D
Ab
84
EE
A7
&6F

Ab
81
27
91
27
8cC
25
BD
35

39
EE
34

35
Ab
2B
33
3@
of}

Ab
81
26
Ab
8A
A7
5A
26

EE
33
Ab

@

20 A
8z58 A
8289 A
(17 1]] A
183C A
@3 A
E4 A
42 A
2420 A
74 14946
28 A
77 149D
6E 149646
a3 A
71 149D
68, 14948
8@ A
23

E4 A
C4 A
41 A
80 A
6E A
15 1453
6F A
11 1453
B600 A
Fi 1438
1835 A
40 A
E4 A
5@ A
50 A
41 A
E4 1447
4D A
1F A
28 A
84 A
6E A
@9 1478
co A
40 A
j=1"] A
Fi 1469
E4 A
c8 15 A
=17 A

DOS - PAGING & OVERLAYS

FCC /

B&A LDD #600
LDY #649
LDU #0
JSR DOMAP

GET USER INPUTS
Lpe #3
DOS DO INPTS

* SETUP ARGUMENTS
LDY 15
LEAU 25U
LDX #$400
BSR B&TAB
LDR #8
B&R B&MOV
BSR BATAB
LDB #3
BSR B&MOV
BSR B&TAB
LDA » X+
ANDA #3
LDy 18
STA U
CLR 15U

* PREPARE LISTING

B&D LDA s X+
CMPA #ELE
BE® B&E
CMPA $6F
BE® B&E
CMPX #$600
BCS B&D

B&D1 JSR DERR
PULS V]
DOS GOs MENU
RTS

B&E LDU LR
PSHS XsU
DOS DOy SCNDIR
PULS XsU
LDA 15U
BMI R&D1
LEAU 135U
LEAX ~-12X
LbB #8

* DISPLAY NAME

B&F LDA s X
CMPA #EHE
BNE B&6G
LDA sU+
ORA #3540
STA ¥ X+
DECE
BNE B&F

* DISPLAY EXTENT

B6G LDy + 5
LEAU 215U

LDA s X+

DISPLAY INPUT SCREEN

NUMBER OF FIELDS

GET INPUTS

POINT TO NAME

/

WAIT FOR A KEYSTROKE

ENTRY FOUND?
IF NO
POINT AT NAME FOUND

MAX NAME LENGTH

POINT AT EXT

PAGE

22699
22700
@z710
82720
Bz730
02740
@z75@
82760
Bz770
02780
@279
02800
0z810
RzBz0
22830
22840
22850
02860
Bz870
22880
02890
22700
@8z2910
@z920
B2938
02740
32950
82940
2270
z980
22978
83020
23010
23020
23030
B3040
B3050
3860
o3a7a
P3280
23098
83182
23110
3120
23130
83140
23150
03169
23170
83180
23190
23200
23212
83220
03230
83240
B83250
P3260

@37 oLy

Q20844
22085A
BZBB6A
@ze874A
ozbasa
Q2089A
D2A98A
Bz091A
B2072A
02093A
B2094A
220954
B2@96A
BzBI7A
222984
@20994A
02188A
@z1014A
2182A
B2103A
B21B4A
BZ195A
B2105A
021074
22108
0z109
92110
8z111
ez112
021134
RZ114A
B2115A
B211s
Pz117A
0z118A
221194
02120
B2121A
@2122A
B2123A
@z124
@2125
@ez126
ez127
02128
Rz129
22130
8z131
82132
22133
B2134
B2135A
Bz136
B2137A
B2138A
821394
B2140
B2141A

147F
1481
1483
1485
1487
1489
1488
148D
148F
1491
1492
1494
1496
1498
1494
149C
149D
149F
14A1
14A3
14A5
14A7
14A8
14AA

14AB
14AD
14B3

14B4
1486
14BC

14BD

14BF
14C5

14C6
14C8
14CA
14CB

14CD

.5A:0

81
26
Cé
Ab
81
26
Ab
8A
A7
5A
26
z0
Ab
81
26
ag
Ab
81
25
8.
A7
5A
26
39

39

39

39

CE

&6F
B5
a3
84
&E
AD
]
40
82

F1
AZ
80
3B
FA

8a
60
Bz
4@
ce

F3

2o

2227

a9

oacs
14C6

23
[r21%]

2000

Bob66

1485
1438

1496

A

A

A

A
A
14CD
A
A

A

DOS - PAGING & OVERLAYS

CMPA
BNE
LbB
B&H LDA
CHMPA
BNE
LDA
ORA
STA
DECE
BNE
BRA
B&TAR LDA
CMPA
BNE
RTS
B&MOV LDA
CMPA
BCS
SUBA
B&MOVLI STA
DECE
BNE
RTS
*

#HE6F 7

B&6D GO GET NEXT ONE
#3

s X

#E6E .

B&D

sU+

#4408

3 X+

B&H
B&D
s X+
#$5B
B&6TAB

s X+
#4660
B&MOVL
#4540

s U+

B&MOV

EE R X ot e s L2 e 2T eI eI TSI LT LT L

* FILL FOR ROUTINES NOT YET WRITTEN
E 2 e g)
* (OTHER MAIN MENU FUNCTIONS)

B7 FDB
bos
RTS

*

B8 FDB
DOS
RTS

*

B9 FDB
pog
RTS

*

BB-B7 SIZE OF OVERLAY
G0» MENU

B9-B8 SIZE OF OVERLAY
GO1 MENU

Bi02-B9
GOs MENU

SIZE OF OVERLAY

FH I IE I TR I I I KT I I I K I I I I I T I3 I IE NI I I I 6T 969K I IR

* & Kk Kk ok k ok Kk

GET SCREEN LINES OUT OF BASIC FILE & DISPLAY

GIVEN IN THE STACK(PUSHED BEFORE CALLING:
(+8 = RET ADDR TO UNDOQ)
{2:8 = RET ADDR TO CALLER)
418 STARTING LINE NUMBER DESIRED
&35 ENDING LINE NUMBER DESIRED
8,5 INITIAL DISPLAY LOC

B33 396 e I KB K I I I I J 16T I KR I TE I I A6 I I I NI I I 66 I I I 16 I NI I I 66

B10 FDB
MAPBSE EQU

BRA
MAPOSW FCB
MAPLN FDB

*
MAP1 LDU

B11-B1@ OVERLAY SIZE

B1@ {ONLY THIS LINE & ONE ABOVE MUST CHG TO USE DIF OVRLAY NBR)
MAP1 BYPABE LOCALS
"] FILE OPEN SW - @ WHEN OVERLAY 1ST LOADEDs 1 FROM THEN ON

"] LAST LINE NUMBER READ

#MSGDCE POINT AT DCB

EDTASM

PAGE

83270
23280
23298
23300
Q3318
23320
23338
@3340
83350
B3360
233708
23380
@a33%5@
23400
23410
83420
034308
83440
83450
23460
23470
23480
23490
23500
3510
B352a
23530
83540
@3558
83568
@3570
83580
23590
03600
83610
23620
03632
B3640
Q34650
036460
3670
83480
@3698
23780
03710
203720
03738
37402
23750
Q3760
23779
03780
23798
23808
23810
a38z0
@lsza
e3840

@38 oLy

@Z142A
@2143A
21444
02145A
82144

B2147A
B2148A
821494
ezi5@

@z151A
BZ152A
@2153A
B21544A
@2155A
B2156

@z2157

@2158A
R21594A
B2160A
Q2161A
B2162A
8z163

R2164A
B2163A
Q2166

221674
B2168A
Q21694
B2178A
@2171A
@2172A
e2173A
02z174

ez173

02176

Q2177A
QZ178A
B2179A
@z180A
@2181A
z182A
82183A
RZ184A
@2185A
@2186A
@2187A
@z21884A
@2189A
Q21904
2191A
B21924
B2193A
B2194A
22195A
B2196A
82197

221984
Q2199A

14D8
14D4
14D8
14DA

14DC
14E2
14E4

14E6
14E8
14EA
14ED
14EF

14F2
14F3
14F8
14FA
14FD

14FF
1581

1583
1506
158
1308
15@F
1511
1513

1515
1518
1518
151
1524
1526
1524
152C
152ZE
1530
1532
1534
1537
153D
153F
1541
1544
1346
1549
1548

154D
154F

. BA:

10BE
10AF
6D
26

86
A7

ED
ED
86
A7

cC
ED
EC
18A3
24

EC
26

CE
EF
cC
1@8E
ED
31
26

CE
cC
ED

26
108
EC
27
EC
ED
34
&F

335
26
18A3
5
18A3
27

24

34
BE

2 DOS — PAGING & OVERLAYS
@625 A LDY +OLYLOC (POINTS BEYOND THIS OVERLAY (WHERE NEXT OVRLAY WOULD GO)
c8 27 A STY DCBLRBEsU USE AS LOGICAL RECORD BUFFER
B4 A TST MAPOSW-MAPRSEs X FILE OPENED?
16 14F2 BNE MAP3 IF YES
* IF FIRST TIME CALLEDs OPEN DISK FILE
DOS OPENs INPUT OPEN DISK FILE
21 A LDA #1
B4 A 5TA MAPOSW-MAPBSEs X SAY FILE 1S OPEN
RESET TO BEGINNING OF FILE
MAPZ CLRD
=3 A STD MAPLN~MAPBSEs X RESET LAST LINE READ
c8 =B A STD DCBRBAsU
@3 A LDA #3 {START READING AT RBA 2@ @@ @3)
c8 2D A STA DCBRBA+Z, U
* CHECK TO SEE IF FILE NEEDS TO BE RESET
* (REQUEST MUST BE > LAST LINE READ)
FFFF A MAP3 L.bD #SFFFF
€8 9 A 8TD DCBPRNsU TO FORCE RE-READ INTO BUFFER
@5 A LDD MAPLN~MAPBSE, X LAST LINE READ
b4 A CMPD 438 1ST LINE TO BE DISPLAYED
E7 1486 BCC MAPZ G0 START OVER AT BOF
* CHECK DISPLAY LOC OPTION
68 A LoD 8+8 STARTING DISPLAY LOC
12 1515 BNE MAPS IF ADDRESS GIVEN
% CLEAR THE SCREEN
420 A LDy #4400
68 A sSTU 8,8 START DISPLAY AT TOP OF SCREEN
66D A LDD #$6060 BLANKS
2100 A LDy #256
Ci A MAP4 STD sU++
3F A LEAY ~1:Y
FA 150F BNE MAP4
*
* READ/DISPLAY LOOP
* READ A LINE
Bb66 A MAP3 LDU #MSGDCB POINT AT DCB
204 A LDD #4 LENGTH OF LINE NBR & MEM ADDR
ce 11 A STD DCBRSZsU SET TO READ 4 BYTE RECORD
DOS READ» RBA
65 1588 BNE MAPERR IF 1/0 ERROR
@625 A LDY >OLYLOC (LOGICAL REC BUFFER)
A4 A LDD 'Y GET *MEMORY ADDRESS™
45 1573 BEG MAP1O IF AT EOF
22 A L.DD 2y Y GET LINE NUMBER
=} A 8TD MAPLN-MAPBSEs X SAVE FOR FUTURE REFERENCE
0] A PSHS D
c8 1z A CLR DCBRSZ+1,U SET FOR VARIABLE LENGTH RECORDS
DOS READs RBA READ A STRING
1) A PULS D
4A 1588 BNE MAPERR IF 1/0 ERROR
b4 A CMPD 438 1S AT LEAST AS FAR AS STARTING LINE NUMBER?
CF 1515 BCS MAPS NOT FAR ENOUGHs GO READ ANOTHER
bé A CMPD 618 IS IT BEYOND LAST ONE?
8z 154D BEQ MAPS IF THIS IS THE LABT ONE
26 1573 Bcc MAP1@ IF AT END OF RANGE
LINE FOUND - XFER IT TC SCREEN
3a A MAP6 PSHS XsY
@625 A LDX >OLYLOC

EDTASM

PAGE @39 OLY

23850
238L0
3870
23880
23892
23700
23918
83928
23738
23748
23952
B3940
23970
03980
23999
04000
24210
04020
24030
84048
24058
04050
24070
04080
04098
B4108
84110
24120
04130
04140
24150
04160
24170
24180
24192
04200
B4z10
04220
B4230
04240
B4252
Q4260
B4270
84280
24290
04308
B431@
24320
243302
24340
B4350
04360
B43780
84380
84390
D4400
04410
RB4420

D2Z0BA
@2201A
Bzz0z

B2203A
B2204A
QLZ@5A
BZ286A
P2207A
B2208A
R2289A
B2210A
0z211A
P2Z12A
@2213A
@Z2144A
@2215A
ezz16

@z217A
B2218A
822194
D2220A
B22Z21A
P2222A
B2223A
P2224A
P2ZZ54A
Q22Z26A
BZ227A
Bz2228A
BZ229A
02230

@z231

22232

82233

82234

B2235

@2236

B82237

B2238

@2239A
B2z240A
B2241A
B2z42A
B2243A
Bz2244

B2243A
BZZ46A
B2247A
D2Z4BA
BZ249A
P2250A
B2251A
P2252A
P2253A
B2254A
B225353A
@2256A
@2257A

1552
1554

1557
1559
155C
155E
1560
1562
1564
1566
1568
156A
156D
156F
1571

1573
1576
157A
157C
137E
1380
1582
1584
1587
1589
158aA
1588
158D

15BE
1590
1592
1595
1599

1598
159D
139F
15A1
1543
15A3
15A7
15A9
15AB
15AE
1580
1382
13RS

.8ATB
32 ot
1BAE &C
A6 B0
Al €8 13
27 oA
a1 4@
24 02
8A 4B
A7 AR
28 EF
AE &C
32 88 20
AF &C
35 3
20 Az
CE @400
1@8E 0200
86 5B
Al C2
27 @7
31 3F
26 FB
CE 2400
EF &8
4F
39
86 19
39

2148
EE &6
1BAE &4
1183 @401
27 18
A6 Ch
81 58
27 BA
81 SD
7 @6
A AR
A7 CB
2@ F@
BD 1035
IF 89
EE 66
10AE &4
1183 2400

>>>>

15AB

DOS - PAGING & OVERLAYS

LEAX 15X (SKIP THE "REM® CODE)
LDY B+445 DESTINATION ADDRESS
* MOVE CHARACTER LOOP

MAP7 L.DA s X+ GET A CHARACTER
CMPA DCBTRMsU IS IT THE TERMINATOR BYTE?
BE@ MAPS IF YES
CMPA #$40 I8 IT SPL CHR?
BCC MAPS IF NO

ORA #$40
MAP8 8TA 1Y+
BRA MAP7
MAPS LDX B8+445
LEAX 32+ X
8STX B+448
PULS XsY
BRA MAPS G0 GET NEXT LINE
* FIND S8TART OF INPUT FIELD
MAP1O® LDV #5400
LDY #3512 MAX CHRS TO TEST
LDA #3358 (LEFT BRACKET ON SCREEN)
MAP11 CMPA s U+
BE® MAP1Z
LEAY =1sY
BNE MAP11
LDy #4400 IF NO FIELD FOUND
MAP1Z 8TU 8,8
CLRA
RTS
MAPERR LDA HERRZS
RTS
*
L R R S E E A S e T
* INPUT A FIELD FROM THE KEYBOARD (ECHO ON THE SCREEN)
*

* GIVEN: (2S5 = RET TO UNDO)
* (2»5 = RET TO CALLER
* 4»8 = ADDR OF INPUT FIELD IN WS
* 4:S = ADDR OF INPUT FIELD ON SCREEN
WA NN TN I U TN T I I T TEE I IEE I I TEIE T IE I I I
B11 FDB B12-B1@® SIZE OF OVERLAY
LDU 618
LDY 438

CMPY #$400 NO FIELD DEFINED?
BE® FLDIZ IF NO FIELD MARKERS
* MOVE ORIG CONTENTS TO SCREEN

FLDI1 LDA (Y LOOK AT DESTINATION POSITION
CMPA #$5B LEFT BRACKET?
BE® FLDIZ IF YES
CMPA #45D RIGHT BRACKET?
BEQ FLDIZ IF YES
LDA 1Y+
S5TA sU+
BRA FLDI1
FLDIZ JSR DERR WAIT FOR A KEYSTROKE
TFR AsB
LDU 635
LDY 4,8
CMPU #4400 NO FIELD MARKERS?

EJiASM

PAGE

4430
D4440
@4450
D446D
4470
D4480
24490
B4500
B451@
@452
84532
04540
24558
Q4560
@457@
84580
@459
B46B2
04610
4620
4630
04640
B4650
B4660
B467B
24680
84699
24700
84710
B4720
84730
B4740
04759
04760
84770
B4780
@4790
24800
24810
84820
24830
84840
84850
24869
84870
0488@
04890
34902
84910
B4920
24932
24740
849502
B4960
84970
249808
04992
05000

Q4@ OLY

B2258A
R2259A
@2260A
@zzb61A
B226Z2A
B2263A
AZZE64A
BI2263

P2266A
BZZ67A
BZz68A
B22&69A
BZZ70A
B2Z71A
@Z27Z2A
@2273A
B2274A
B22Z73A
B2Z76A
2Z77A
Q22784
R2ZTIA
@2z8BA
2z2z81A
QLZBZA
22283

B2284

D2285A
DZzB6A
P2287A
B228BA
B2z89A
B22904A
P2z91A
BZ292A
@2293A
DR294A
BZ299A
R2296A
B2297A
B2z98A
B2299A
22322

22301

Bz308z

223@3

@2304

@z2303

BE3B6A
Bz307A
B2308

BZ329A
BZ310A
@2311A
DI31z2A
BE313A
@2314A
Q23134

15B9
1588
15BD
15BF
15Ct
i5C3
15C5

13C7
15C9
15CB
15CD
15CF
13D1
1503
15D5
15D7
15D%
15Dg
13DD
15E@
15E2
13E3
15ES
13E7

13E9
15ER
15ED
15EF
15F1
1S5F3
15FS5
15F7
15F9
15FB
15FD
15FF
1601
1603
1685

1606
1608

1604
168D
160F
1612
1618
161A
161C

. GAs

27
81
25
81
25
81
23

Ab
81

81
27
iF
A7
81
24
8A
A7
1BAF
EF
5F
Ab
81
286

81
2b
86
A7
A7
Ab
81
27
31
33
86
A7
A7
z0
39

34

CE
86
A7

27
81
27

7]

44
20
2A
=12
@4
608

22

Ca
5B
1€
5D
18
98
AR
40
@z
40
co
b4
bb

Ca4
5D

cz

28
18
20
A4
C4
5F
58
@4
3F
SF
20
AL
C4
D8

16075

A
15E9
153C7

15E9

15E9

15E9

15F

13D

DOS - PAGING & OVERLAYS

BEQ FLDIXX IF NO FIELD MARKERS: EXIT WITH KEY IN A & B
CMPA #4620 WAS IT LOW CONTROL KEY?
BCS FLDIX IF YES
CMPA #45B SPL. CHR/NUMBERS/UPPER CASE?
BCS FLDI4 IF YES
CMPA #4608 HIGH CONTROL CODES?
BCS FLDIX IF YES
* FALL THRU WITH LOWER CASE
FLDI4 L DA sU
CMPA #4502 15 CURBOR OVER START OF FIELD?
BEGQ FLDIX IF YES
CMPA #45D OVER END OF FIELD?
BE® FLDIX IF YES
TFR Bs A
8TA sY+ SAVE CHR IN INPUT AREA
CMPA #4540 SPL CHR?
BCce FLDIS IF YES
QRA #4540
FLDIS &8TA s U+
FLDISA STY 428
ST &35
CLRE
LDA sy
CMPA #65D FIELD OVERFLOW?
BNE FLDIZ
*
% EXIT WITH LAST KEY PUSHED IN B (ZERO IF FIELD OVERFLOW)
FLDIX CMPA HLEFT (LEFT ARROW?)
BNE FLDIXX
LDA #5520
8TA Y
8STA sU
L.DA ~-1sU
CMPA #4638 IN FIRST POSN NOW?
BEQ FLDIX1 IF YES
LEAY ~1sY
LEAU -1V
FLDIXt LDA #4220
STA sY
8TA s U
BRA FLDISA
FLDIXX RTS
*
* ACTUALLY LOAD AND EXECUTE PROGRAM
% GIVEN: DCB FOR THE PROGRAM FILE STORED
* IN USRDCE
B12 FDB B13-B1Z BIZE OF OVERLAY

PSHS X SAVE MY BASE (LOWEST LOAD ADDRESS ALLOWED)
* STEP 1 OPEN THE PROGRAM FILE - DOES IT EXIST?
LDy #USRDCB

LDA #$FF

STA DCBDRV,U SEARCH ALL DRIVES
DOS OPENs INPUT

BEQ@ EX1 IF OK

CMPA #ERR13 NOT PREV CLOSED I8 OK
BEQ EX1

EJIASM

PAGE

25010
P5020
25030
P3040
05859
25060
25070
85282
25070
85100
R5110
@51:20
231308
@5140
251508
05160
25170
85180
25199
05208
232108
@32:0
232302
5240
@5z52
@5260
5278
@5:z80
05292
25300
23310
@5320
95330
05340
23350
25360
85379
85380
25396
20210
20020
20030
02@40
[at.]
226D
2072
oz
22050
22100
20110
021208
201308
20140
20150
221502
29170
22180
201502

841

B2316A
B2317A
2823184
B2319
02320
B23Z1A
QE322A
Q2Z3IZ3A
Q23244
@Z325A
Bz32bA
B2327A
B232BA
B2329A
B2338A
Q23314
BZ3IEA
@2333A
Bz334A
B2333A
R2336A
@z337
B2338A
B2339A
B234BA
D2341A
B2342A
23434
BL344A
@23454A
BE346A
B2347A
B23484
B2349A
223504
B2351A
02352A
B2353A
82354
@2353
B2356
B2357
32358
@2339
02360
B2361
B2362
B2363
E364
B2365
22366
@367
B2368
B2369
@az378
@z371
B2372
D2373A

oLy

161E
1622
14624

162A
162D
1630
1633
1636
163C
163E
1648
1642
1644
1646
1648
1644
164D
164F
1651

163533
1656
1659
165¢C
165F
1661
14664
1667
166A
166D
166F
1671
1673
1675
1678
167A

167D

.8A:8
AD 9F B6
33 1@
BE @625
AF c8 27
cC 20A
ED c8 11
z6 E2
&D 84
27 24
86 1B
208 D8
EC @3
27 @ac
1@A3 E4
24 B4
86 1A
za ce
ED c8 =7
EC c8 27
FD B&627
EC 28
ED €8 11
E3 cg 27
c3 22a3
FD B625
1F oz
86 FF
A7 3F
Bé6 @5
A7 <8 2b
35 1@
7E 1895
BoR1

16 A
A

>

161E

>

1646
A
161E
A
1656
1653

161E

>P»>2>r>>>D>P>P> D

A

DOS - PAGING & OVERLAYS

EXERR JSR [ERROR]
PULS X
bos GO MENU
*
* READ FILE PREFIX DATA (LOAD ADDR: RBA OF 18T OVERLAYs ETC)
EX1 LDX *OLYLOC POINT BEYOND ME
STX DCBLREB:U USE AS LOGICAL REC BUFFER
LDD #10 READ 18T 1@ BYTES OF PROGRAM FILE
STD DCBRSZ»U
jafeist READ» RBA
BNE EXERR
T8T s X IS8 18T BYTE IEROT?
BE® EXZ IF YES: OK
LDA HERR27 WRONG TYPE FILE
ERA EXERR
EXz LDD 39X (LOAD ADDRESS)
BE® EX3A IF BASED AT ZERO» ASSUME RELOCATABLE
CMPD [R:] HE MUST LOAD ABOVE THIS POINT
BCC EX3 IF HE IS OK
LDA HERRZ6 LOAD ADDR IS TOO LOW
BRA EXERR
* LOAD ADDRESS IS HIGH ENOUGH
EX3 STD DCBLRBsU BET THIS AS LOGICAL RECORD RUFFER
EX3A LDD DCBLRB,U
INCD
5TD >USRBSE
LDD 81X (SHOULD BE RBA OF 18T OVERLAY)
8TD DCBRSZ,U THAT IS ALSO HOW BIG ROOT SECTION IS
ADDD DCBLRBsU RESULT I8 WHERE END OF ROOT WILL BE IN MEMORY
ADDD #3
8TD FOLYLOC SET THIS AS BASE OF FUTURE OVERLAYS
TFR DsY
LDA #$FF INVALIDATE WHICH OVERLAY IS IN OVERLAY AREA
8TA =1y
LDA #3
STA DCBRBA+2sU START READING WITH &TH BYTE
PULS X
JMP B1zA GO LOAD ROOT & XFER CONTROL TO IT

*
LR R R R Rl R R S R L S R R R R R R R R R E RV SRV vy

* RELOCATABLE REAL-TIME CLOCK ROUTINE

*

* DESIGNED TO BE L.OADED BY MAINLINE OF USER’S PROGRAMs SAVING ITS
* LOAD ADDRESS. THEN ACCESSED THRU THE SAVED VECTOR TG PERFORM

* FUNCTIONS.,

*

* GIVEN: B=@ - INITIAL CALLs LINK SELF INTO TIME INTERUPT AND PROTECT
* MYSELF FROM BEING OVERLAYED

* B=FF -~ UNLINK AND RELEASE OVERLAY SPACE

* B=1 - GET TIME

* =2 ~ SET TIME

* WITH GET & SET TIME. Y CONTAINS SECONDS AND &4BTHS OF SECONDS

* U CONTAINS HOURS AND MINUTES

* WITH INITIAL CALLs U ~> DISPLAY ADDRESS (@=NQ DISPFLAY DESIRED)

* Y = 1 FOR HOURS, 2 FOR MINUTESs 4 FOR SECONDS
* OR ANY COMBINATION (ADDED TOGETHER)

813 Fpe B14-B13 OVERLAY SIZE

EdiASM

PAGE

20200
2" 31"
2022
2z302
22240
20258
0260
aaz7a
20280
222982
o300
22310
Bo3ze
22338
@e34@
28358
20360
2a37@
22389
22390
20408
DO410
204202
20438
28448
00450
004460
20470
80480
20490
22500
22510
RS20
20530
P2540
2@55@
20360
20578
23580
285908
204600
20610
00620
22630
D@L4D
28650
82663
BB67D
80680
004692
ea70a
2e710
00722
21738
80740
o750
0760
Ba7792

B4z OLYZ

2374

@L375A
B2376A
Qz377A
@Z378A
@z3794A
DZ380BA
Bz381A
BZ382A
@2383A
Bz384A
P2385A
B2386A
P=387A
Bz388A
B2389A
B2398A
@z371A
@2392A
BZ393A
Rz394A
23954
@2396A
Bz397

B82398A
223994
02408A
B24@1A
B24024
RZ4D3A
B2404A
2240@5A
B24B6A
BZ4B7A
B2408A
2z4@9

024104
Bz2411A
B2412A
2413A
BZ4144
B2415A
Rz4l16

B2417A
BZ2418A
B2419A
B2420A
BZ421A
BZ422A
B2423A
D2424A
B2425A
DZ426A
B2427A
Bz242BA
Q24294
BZ430A
@2431A

167F
1681
1682
1683
1684
1685
1687
1688
1689
1688
168D
16BE
14699
1691
1693
1695
1698
1699
1469A
169C
169F
16AQ

16A1
16A3
16A5
1647
16AB
16AD
16B3
16B3
1687
1688
16BA

16BB
16BF
16C5
16C7
16C9
16CA

16CB
16CE
16D1
16D3
16D4
16D6
1608
16DA
16DB
16DD
16DE
16E@
16E2
16E4
16ES

. SAz

20

8

167D A
@7 1688
o6 A
20 A
o8 A
o8 A
2o0a A
20 A
16 16A1
1E A
2B 16BB
87 169A
B4 A
26 A
24 A
06 A
08 A
20 A
A A
89 BO4E A
44 A
b2 A
?6 A
Bz A
89 BB4E A
26 A
b2 A
2200 A
0000 A
86 A
8o A
38 A
Fi 16CB
21 A
26 A
&0 A
1A 1&FE
26 A

DOS ~ PAGING & OVERLAYS

CLK

HRS
MIN
SEC
CNT
TMELOC
TMEOPT
CL.K1

CLKSET

CLKGET

*
CLKGO

*

CLKBTP

x
CLKTME

EQU
BRA
FCB
FCR
FCB
FCe
FDB
FCe
TSTB
BE®@
LEAX
TSTR
BMI
DECB
BEG
STU
STY
CLRA
RTS
LDu
LDy
CL.RA
RTS

STV
TFR
sSTB
LEAU
8TX
DOS
LDD
PSHS
CL.RA
LEAX
RTS

LEAU
DOS
PULS
8TD
CLRA
RTS

JMP
LDX
L.DD
INCE
8TD
CMPE
BCS
CLRB
ADDA
DAA
STD
CMPA
BCS
CLRA
STA

B13 (TO ALLOW CHANGING TO DIFFERENT OVERLAY DURING DEVELOPMENT)
CLK1 JUMP OVER LOCALS
%] HOURS (COUNTS TO 2355)
"] MINUTES (ALL VALUES SET TQ ZERO WHEN LOADED)
2 SECONDS
"]
o] TIME DISPLAY LOC
@ HRsMINs SEC OPTION
WHICH OPTION?
CLKGO
25X
CLKSTP
CLKGET
HRS—-CLKs X
SEC—-CLK» X
HRS-CLK1 X
SEC-CLKs X

TMELOC-CLKs X SAVE DISPLAY ADDRESS

YsD

TMEOPT-CLKs X SAVE DISPLAY OPTION
CLKTME-CLK»X POINT AT INTERVAL ROUTINE

45U SET LDX COMMAND TO L.OAD CURRENT X VALUE

TIMEsON PLUG IN THE CLOCK

2,8 RET ADDR TO CALLER

D PUT IN TOP OF STACK TO BYPASS NORMAL EXIT OF OVERLAY
29X TELL USER WHERE TO ENTER ME

RETURN TO CALLER

CLKTME-CLKs X POINT AT INTERVAL ROUTINE
TIMEsOFF PULL THE PLUG

D RET ADDR TO CALLER

2:8 SET TO RET TO HIM AFTER EXITING FROM OVERLAY
>0

#2 THIS INSTR MODIFIED BY ABOVE ROUTINE
SEC~CLKs X LOAD SEC & &@THS

SEC~CLK» X

#5646 FULL SECOND?

CLKTME IF NO» EXIT

#1

SEC-CLKs X

#4560 FULL MINUTE?

CLKDGP IF NO

SEC-CLK X

EJIASM

PAGE

20780
20790
20802
@812
228z9
22830
20842
20850
20860
Pas7e
20880
22850
00702
227108
20720
22930
22940
00952
002608
2770
Bo788
20992
21200
21010
21020
81030
01049
D185
21060
21070
21280
01070
21100
P111@
21120
81132
B1140
21150
01160
21170
21180
2119@
P1200
21219
B1220
21238
01240
B1250
21260
B1270
21280
21290
81300
21310
01320
01338
21340
21350

843 OLYZ

Q2432A
B2433A
B24344
@2435A
BZ436A
B2437A
024384
BZ439A
B2440A
B2441A
B2442A
B2443A
D2444A
@2443

B2446A
B2447A
B2448A
Q24494
B2450A
BZ451A
B2452A
BZ2453A
B2454A
B2455A
B2456A
@2457A
24584
P24594A
B2460A
B2461A
B2462

B2463A
BZ4b4A
DB2465A
B2a66A
Q2467A
B246BA
B2469A
B2470A
@2471A
Q24T72A
@z473A
B2474A
Q2475

Bz476

82477

22478

B2479A
82480

B2481A
Q24824
BZ24834A
B2484A
D2485A
B2486A
@Z487A
824884
B2489A

16E7
16E9
16ER
16ED
16EE
16FD
16F2
16F4
16F6
16F7
16F9
16FA
16FC

16FE
1700
170z
1704
17@5
1787
17@39
1708
170¢
170E
1718
1712
1713
1715
1717
1719

1718
171D
171E
171F
1720
1721
1723
1725
1727
1729
17z8
172D

17ZE

1730
1733
1737
1734
173D
1741
1743
1745
1747

.54A:

EC
cB
1E
19
1E
E7
Ci
23
SF
j212)
19
ED
20

EE
27
Eé
54
24
Ab
8D
54
24
Ab
8p
54
24
Ab
8D
20

34
44
44
44
44
88
A7
35
84
8B
A7
39

cC
108E
CE
BD

27
80
27
25

"]

B4
21
89

89
@5
=]
@8

21

24
<D

o8
co
2A

04
o4
18

@4
@5
09

B&
1)
2z
BO

ez

38
ca
Bz
BF
30
Ci

Bez7

Bos4
@ac7
2002
123C

FA
31
oe
F4

P> P>

16FE

16CB
146CB
A

1708

A
1718
1712

A
1718
16CB

1718
16C8

>>>>P>

>>2>> >

173D
A

1732
173D

DOS - PAGING & OVERLAYS

LDD HRS~CLKs X

ADDR #1

EXG AsB

DAA

EXG AsB

sTB MIN~CLKs X

CMPR #6560 FULL HOUR?
BCS CLKDSP IF NO
CLRB

ADDA #1

DAA

STD HRS-CLK>» X
BRA CLKTME
* DISPLAY RESULTS IF NECESSARY
CLKDSP LDV TMELOC~-CLKs X DISPLAY LOC
BE® CLKTME EXIT
Lo TMEOPT~CLKs X DISPLAY OPTION
LSRE
BCC CLKZ IF NO
LDA HRS~CL.Ks X
BSR CLKEDT

CLKZ LSRE MINUTES DESIRED?
BCC CLK3 IF NO
LDA MIN-CLKs X
BSR CLKEDT

CLK3 LSRB SECONDS DESIRED?

BCC CLKTME IF NO

LDA SEC~-CLK» X

BSR CLKEDT

BRA CLKTME
#* EDIT THE BCD NUMBER IN A - DISPLAY AT U
CLKEDT PSHS A

LSRA

L.SRA

L.SRA

LSRA

ADDA #$30
STA s U+
PULS A
ANDA HEOF

ADDA #430
S5TA s U++
RTS

*

396 36 36 3 36 96 I 1636 30 I J6 3 I I6 I I I K I H I T I I I T T W F I I I I I I I WK AWK

* DOS MAIN MENU DISPLAY

3 36HJE A6 I I IE T 6K I I BTN NI I I I NI I IR RN

Bl4 FDB B15~-B14 BIZE OF OVERLAY
* DISPLAY DOS MENU SCREEN

L.DD #100 STARTING LINE NUMBER
LDY #199 END OF RANGE
LDy #0 SAY CLEAR SCREEN FIRST

JSR DOMAP DISPLAY MENU MAP
MENU1 SYSTEM POLCAT
BEQ MENU1

SUBA #$31 LESS THAN 17
BEG MENUZ IF 1 ENTERED (RET TO BASI(C)
BCS MENU1 IF YES

EJASM

PAGE

1360
21372
21380
1390
31402
01410
01420
Bi43@
B1442
21450
01460
21470
21480
21490
21320
215102
D150
21338
Q1540
81550
81560
Q1370
@1580
81592
814620
81610
01620
B1638
81640
@1&5@
R166D
@1670
01689
21690
01722
21710
B17:z0
@173
@1742
817508
B1760
@177@
21780
@179
218002
@1810
21820
218302
21840
21850
018460
21870
21880
B189@
81760
21712
81920
21930

@44 QLYZ

D2420A
B=491A
Q24924
BZ493A
D2494hH
B2493
D426
2497
@z498
B2499
22500
22501
P2502
@25@3
BE504
22505
Bz586
az507
508
@Bz309
BE510
#2511
i Bed
225134
B2514
DZ515A
D25 16A
Q2Z517A
Bz518A
BES19A
BZS20A
BESZ1A
[l Vg
02523
PE324A
@z523A
DESZ6A
B2I327A
B2528A
@25z29
PZ530A
BE531A
P25324
B2333A
Bz5344A
PI5354
D2536A
Bz537A
@2538A
R2539A
B25404
B25414
BE542A
B2543A
BZ5444
B2545A
D2546A
Q2547A

1749
174B
174D
174E
1752

1755

1757
1759
1758
173D
175F
1761
1763

1765
1767
1764
176C
176E

176F
1772
1774
1778
1778
177D
177F
1783
1787
i78E
178F
1795
1798
179A
179E
17A1
17A3
17A5

. BA:

a1
24
4C
AD
7E

iF
83
Z4
86
39

c3
ED
31
10AF
31
&F
10BF
AF
AF
33

FE
EF
33
FF
EE
34
4F

]

as A
FO 173D

FF Q6BC A
@FF& A

@2D3 A
1755 A
ac 1765
radraleal”] A
fulrdval A
2000 A
[radlelv] A
[udndnlr.] A
2000 A

38 A
oeps A
@3 176F
i8 A

2201

as

89 @@Ds
@4

AB

AQ

@625

89 QAR
89 BB53
89 QA7

Bb6LA

QE

89 @esz
B&1A

62

49

P> P>

DOS — PAGING & OVERLAYS

CMPA #6 NUMBER OF MENU SELECTIONS THAT HAVE BEEN WRITTEN
ecc MENU1 IF NOT IN RANGE
INCA TO GET OVERLAY NUMBER OF SERVICE ROUTINE
JSR [GO] PAGE IT IN & GO TO IT
MENUZ JMP OBASIC
*
% BUFFERED PRINT 1/0 OVERLAY
*
* TO ACTIVATE!:
* LDU #SIZE (TOTAL MEMORY TO USE FOR THIS PURPOSE)
* DOS DOsBUFPRT
*
* TO USE:
* LDA CHARACTER TO PRINT
* AGAIN CLRE (BAYS "I AM NOT SHUTTING DOWN")
* JSR LPRNT]
* BNE AGAIN IF BUFFER WAS FULLs TRY AGAIN (OR GO DISPLAY MSG)
*
* TO TERMINATE:
* LDB #1 (ANY NON-ZERO SAYS SHUT DOWN)
* JSR [PRNT I
815 FDB B16-B15 SIZE OF OVERLAY
ap EQU B15 (FOR USE IN RELATIVE ADDRESSING
BRA BP1 JUMP OVER LOCALS
PRTBUF FDBE a POINTER TO PRINT BUFFER
BUFGZ FDB %) SIZE OF PRINT BUFFER
BUFCNT FDB "] NUMBER OF CHRS IN BUFFER
SNDCHR FDB 2 POINTER INTO BUFFER FOR CHR BEING SENT
STRCHR FDB] POINTER INTO BUFFER FOR CHR BEING STORED
PRNTSV FDB] SAVE AREA FOR VECTOR TO ORIG PRNT ROUTINE
*
* SEE IF EMOUGH ROOM PROVIDED
BP1 TFR UsD PUT SPACE ALLOWED IN D
SURD #BPSZ+5 AMOUNT NOT AVAILABLE FOR BUFFER
BCC BP1A IF ROOM FOR AT LEAST i1 BYTE BUFFER
LDA #ERRZ24 BUFFER NOT BIG ENOUGH
RTS
* SET UP FOR BUFFERED PRINTING
BPiA ADDD #1 (ACTUAL SIZE OF BUFFER)

STD BUFSZ~BPs X SAVE BUFFER SZ
LEAY BPSZ+3sX POINT AT BASE OF BUFFER
8TY PRTBUF-BPs X SAVE IT

LEAY DsY POINT BEYOND END OF BUFFER
CLR sY+ SAY NO VALID OVERLAY FOLLOWS
sSTY SOLYLOC THIS 18 WHERE NEXT OVERLAY GOES

STX RPTME+4-BPs X MODIFY LDX COMMAND

8TX BPOUT+3~BPsX (S0 1T KNOWS WHERE LOCAL WS IS)
LEAU BPTME~BP:X POINT AT TIME ROUTINE

DOS TIME.ON PLUG IT IN

LDy *PRNT GET ADDR OF ORIGINAL PRINT ROUTINE
STV PRNTSV-BPs X SAVE IT

LEAU BPOUT-BPsX POINT AT ENTRY FOR BUFFERED PRINT

8TU *PRNT

LDy 2:8 RET ADR TO USER

PSHS v (BYPASS NORMAL RETURN THRU UN-DO)
CLRA SAY DONE OK

EJIASM

PAGE

@1940
21950
219460
01970
01980
01992
el
2z210
Q2020
22038
Bz040
B2@50
QD60
22070
82080
0zB70
Q2100
0z112
02120
0z1302
02140
B2150
22168
@170
02180
22190
2zz00
02210
Q2220
02230
Q2240
Q2250
R2z60
Q2270
22280
Bz29@
0z300
B2310
02320
Bz2330
02340
82350
82360
22370
02380
82350
22400
R2410
82420
22430
02440
D245
02460
82470
Bz480
02490
02500
02510

245 OLYZ

B2548A
B2549
Bz550
@2551A
BZ532A
Q23534
B2554A
BZ535A
B2556A
BZ557A
BZ3538A
B2559A
BZ568A
B23614A
D2562A
B2363A
D2564A
D2565A
B25664A
B23867A
225684
ZH69A
BZ370A
QZ371A
BEITEA
QE373A
QE5744A
B25754A
BE376A
Bz377
@2578A
B2379A
02580A
Dz581A
Q25824
B2583A
225844
225854
23864
Dz587A
B25884
8x589
82590
B2591A
RZE3724
225393
BE594A
DE395A
Dx596
@2397A
B2598A
BE599A
Bz2600A
R2601A
Bz40z
026034
Q26844
D2605A

1746

1747
1749
17AC
17AD
17AF
1781
1784
17B6
17B8
17BA
178C
17BE
17C@
17C2
17C4
17¢7
17CA
17CC
17CE
1700
17Dz
17D4
17D6
17D9
17D8
17DD

17DF
171
17E3
17E7
17ED
17EF
17F2
17F4
17F7
17F%
17FB

17FC
17FF

1802
1804

1806
1808
1804
igac
180F

1811
1813
1816

.8A:0

39

34 32 A
BE 2200 A
3D

26 e 17DF
EC @8 A
18A3 @6 A
z5 B& 17BC
86 81 A
35 52 A
24 F3 17AF
EE @4 A
EC ac A
33 ‘B A
c3 2001 A
10A3 @6 A
25 2z 17CE
ED ac A
Ab E4 A
A7 C4 A
EC 88 A
c3 2001 A
ED 28 A
35 Dz A
EC a8 A
26 FC 17DF
33 87 ADAT7 A
EC 3 A
FD B51A A
EC @4 A
FD B&ES A
35 48 A
ED -3 A
39

7E 2000 A
8E 2000 A
EC 28 A
27 Fé& 17FC
EE B4 A
EC @A A
Ab CB A
AD 98 OE A
26 EB 17FC
EC @A A
c3 2oa1 A
18A3 @6 A

DOS ~ PAGING & OVERLAYS
RTS

* SEND A CHARACTER TO THE PRINTER VIA BUFFERED 1/0
BPOUT PSHS AsXsU
LDX #02 {(THIS INSTR MODIFIED BY SETUP LOGIC)
T8TE REQUEST TO SHUT DOWN?
BNE BPO3
BPOL LDD BUFCNT-BP: X
CMPD RUFSZ~BPsX ROOM FOR MORE?
BCS BPO1A IF ROOM

LDA #1 SET NON-Z COND
PULS AsXsU
BCC BPOL IF NO ROOM

BPO1A DSABLI
Lby PRTBUF-BPs X
LDD STRCHR-BPs X DISPLACEMENT IN BUFFER

LEAU DsU POINT AT NEXT STORE POSITION
ADDD #1
CMFPD BUFSZ-BP1 X WRAF AROUND?
BCS BPOZ IF NO
CLRD
BPOZ STD STRCHR~BPs X
LDA 18 (CHR TQ BE PRINTED)
STA (XY
LDD BUFCNT-BPs X
ADDD #1
STD BUFCNT-BPs X
ENABLI

PULE A1 XsUs PC
* WAIT FOR BUFFER TO EMPTY
BPO3 LDbD BUFCNT-BPs X EMPTY YET?
BNE BPO3 IF NO WAIT
LEAV BEPTME-BPsX POINT AT TIME ROUTINE
DOS TIME:OFF UN PLUG IT
LDD PRNTSV-BPs X GET ADDR OF CORIG DRIVER
STD >PRNT RESTORE IT
LLDD PRTBUF-BPsX WHERE NEXT OVERLAY SHOULD HAVE GONE
STD *OLYLOC

PULS V] (RET ADDR)
STD 28 I°M BET TO RETURN VIA UN-DO)
RTS
*
* TIME INTERVAL DRIVEN PRINT LOGIC
BPTME JMP =B (TO NEXT TIME ROUTINE)
LDX #0 (INSTRUCTION MODIFIED BY ABOVE LOGIC)

* IS8 THERE DATA IN THE BUFFER TO BE SENT TO PRINTER?
LDD BUFCNT-BFs X
BE® BPTME IF NO» EXIT
* TRY TO SEND IT (PRINTER MIGHT NOT BE READY)
LDy PRTBUF-BPsX POINT AT BUFFER
LDD SNDCHR-BPs X DISPLACEMENT WITHIN BUFFER

LDA Dy GET CHR OUT OF BUFFER
JSR LPRNTSV-BPs X 1
BNE BPTME IF PRINTER WAS NOT READY

* ADVANCE BUFFER POINTER
LDD SNDCHR-EPs X
ADDD #1
CMPD BUFSZ-BPsX IS POINTER WRAPPING AROUND END OF BUFFER?

ETASM

PAGE

22520
82330
B2540
02550
82568
92570
22580
vz59@a
22608
Rz&610
Bz2620
@z630
Q26408
026508
Q2662
Qz670
22680
224690
@z700
02710
ez720
@273
2740
82750
Q2760
0z277@
02788
82790
azeon
22810
BzBz@
22830
22840
82850
02860
22878
22880
22890
8z900
2z910
02920
22930
22940
02959
22968
02970
z980
Q2990
23000
23010
230z0
23032
a3a4a
23850
23060
aze7o
23880
03098

@46 OLYZ

B26D6A
B2607A
Q2608A
22609

BZ610A
@2611A
B2612A
026134
Bz614

02615

Q2616

Rz2617

B2618A
02619

02620

Bz621A
Q26224
@2623A
Q2624A
R2625A
B2626A
B2627A
B2628

02629

@2630A
B2631A
RZ&632A
@2633A
B2634A
B2&635A
Q26364
B2637A
Bz63B8A
@24639A
B2640A
02641A
B2642A
B2643A
@Qz&44A
Q25643A
B2646A
@2b47A
D26484A
B2647A
B2650A
B2651A
BZ652A
B2653A
@2654

@655

B2656A
B2657A
22658A
B2639A
QZ660A
B2661A
B2662A
Q26634

1819
1818
181D

181F
1821
1824
1826

1828

1824
18z2C
18ZE
1830
1832
1834
1834

1838
183A
183D
183F
1841
1842
1845
1847
1848
184E
1850
1852
1836
1854
185E
1862
1868
1868
186D
1871
1874
1876
1878
1879

187A
187C
187F
1881
1883
1885
1887
1889

.5A:0
25 @z 181D
ED @A A
EC @8 A
83 @201 A
ED 08 A
2@ D4 17FC
20Cs A
28D3 A
1828 A
29 @BCc 1838
2020 A
2000 A
o000 A
2200 A
0000 A
2000 A
1IF 30 A
83 @oca A
24 B3 1B4Z
86 1C A
39
€3 @001 A
ED @b A
31 B9 BRCB A
1BAF @4 A
31 AB A
6F AR A
1@BF @625 A
AF 89 DBE2 A
AF 89 D@55 A
33 B89 BO7E A
FE @61C A
EF @E A
33 89 D@52 A
FF @&1¢C A
EE &2 A
34 4@ A
4F
39
34 54 A
8E R A
EC @8 A
26 Bz 1885
35 D4 A
EE @4 A
EC @A A
33 CR A

DOS — PAGING & OVERLAYS

BCS BPT1 IF NO

CLRD
BPT1 8TD SNDCHR-BPs X SAVE POINTER TO NEXT CHR
* ADJUST BUFFER COUNT

L.DD BUFCNT-BP» X

SuUBD #1

8TD BUF CNT-BPs X

BRA BPTME EXIT (ONLY SEND ONE CHR PER INTERUPT!)
*

* BUFFERED KEYBOARD INPUT OVERLAY
FAE AN NI NI KRN

B16 FDB 817-B1é
BPSZ EQU Bi4-B15 (FOR PREVIOUS ROUTINE’S USE)
BK EQU Blé
BRA BK1 JUMP OVER LOCALS
KEYBUF FDB @ ADDR OF KEYBOARD BUFFER
KEYSZ FDB "] SI1ZE OF KBD BUFFER
KEYCNT FDB a NUMBER OF KEYSTROKES IN BUFFER
SNDKEY FDB "] DISPLACEMENT TO NEXT KEY TO GIVE USER
STRKEY FDB 7] DISPLACEMENT FOR STORING NEXT KEYSTROKE
KEYSV FDB] SAVE AREA FOR ADDR OF ORIGINAL KBD ROUTINE
*
* SET UP FOR BUFFERED KBD
BK1 TFR Us:D PUT SPACE ALLOWED IN D
SUBRD #BKSZ+5 AMOUNT NOT AVAILABLE FOR BUFFER
BCC BK1A IF ROOM FOR AT LEAST 1 BYTE BUFFER
L.DA #ERRZB BUFFER NOT BIG ENOUGH
RTS
BKiA ADDD #1 (ACTUAL. SI1ZE OF BUFFER)
STD KEYSZ-BKs X SAVE BUF 87
LEAY BKSZ+3s X POINT AT BASE OF BUFFER
STY KEYBUF~BK» X
LEAY DY
CLR 1Y+ SAV NO VALID OVERLAY FOLLOWS
STY >0LYLOC NEXT OVERLAY GOES HERE
8TX BRKTME+4~-BKsX MODIFY LDX INSTR
87X BKGIVE+3-BKs X DITTO
LEAU BKTME-BK1 X
DOS TIMEsON PLUG IN TIME RTN
LDU SKEYIN
STU KEYSV~BKs X
LEAU BRGIVE-BK» X
STU >KEYIN
LDU 2.8
PSHS V)
CL.RA
RTS

*
* POLL FOR A CHARACTER TO GIVE USER

BKGIVE PSHS BaXsU
LDX #0 (THIS INSTRUCTION MODIFIED BY SETUP)
LDD KEYCNT-BKs X COUNT OF BUFFERED CHRS
BNE BKG1 IF ONE TO SEND

PULS BsXsUsPC IF NONEs EXIT WITH A=ZERCQ
BKG1 LDU KEYBUF~BKs X ADDR OF BUFFER

LDD SNDKEY—-BKs X DISPLACEMENT

LEAU DsU POINT AT CHARACTER

PAGE 047 OLYZ .5A:0 DOS — PAGING & OVERLAYS

Q3100 Q2664 * ADJUST POINTER TO NEXT POSITION
23110 ©26653A 188R C3 oo01 A ADDD #1

03120 02666A 18BE 10A3 @6 A CMPD KEYSZ-BKs X WRAFP AROUND?
03138 B2667A 1891 25 Fz 1885 BCS BKG1 IF NO

B@3140 QZ66BA 1893 CLRD

B3150 B2669A 1893 ED 2A A BKRGZ 8TD SNDKEY-BKs X

@3160 B2670A 1897 Ab Ca4 A LDA sU

03170 02671A 1899 34 @z A PSHS A

23180 @2672A 189B EC o8 A LDD KEYCNT-BKs X

23198 B2673A 1B9D B3 2221 A SURD #1

@3200 Qz674A 18ARQ ED Q8 A STD KEYCNT-BKs X

B3218 @24675A 1BAZ &D E4 A 18T [R=]

@3220 P2676A 18A4 35 D& A PULS DsXsUsPC

83238 24677 *

B3240 02678 * TIME INTERVAL KEYBOARD SCAN ROUTINE

23258 @2679A 18A6 TE L] A BKTME JMP >0 TO NEXT TIME ROUTINE
B3260 Oz6BRA 18A% BE 2000 A LDX #2 (MODIFIED BY SETUP)
23270 026B81A 1BAC EC o8 A BKTMEA LDD KEYCNT-BK: X

@3280 B2682A 1BAE 10A3 86 A CMPD KEYSZI-BK:X IS BUFFER FULL?
23298 ©2683A 18B1 25 13 18C6 BCS BKT1 IF NO

03300 02684 *+ BUFFER IS FULL - GO BEEP

03310 @2683A 18B3 BE FF22 A LDX #U4BDR

R3320 BR6BLA 18B6 Ab 84 A L.DA s X

23330 02687A 1888 88 ez A EORA #2 COMPLIMENT SOUND BIT
@3340 @z26B8A 18BA A7 84 A STA X

93330 @B2689A 18BC 10BE 2020 A LDY #$20 PULSE WIDTH

B3360 0z2699A 18CE 31 3F A BKT@ LEAY —1sY

Q3378 Bz671A 18CZ 26 FC 18C0 BNE BKT@

A3380 Bz692A 18C4H 20 EQ 1BAS6 BRA BKTME EXIT

B3398 02673A 18C6 AD 98 @E A BKT1 JSR [KEYSV-BKs X1 GO POLL KEYBOARD
03400 02694A 18C% 4D T8TA

B341@ RZ693A 18CA 27 DA 18A6 BE® BKTME IF NO NEW KEYSTROKES, EXIT
B3420 B26I6A 18CC 34 ez A PSHS A SAVE KEY

03430 @2697A 18CE EE 24
B3440 Q2698A 18DG EC 2c
3452 B2699A 18DZ 33 ce
03460 Q27004 18D4 C3 0201
03470 Bz701A 18D7 10A3 D6
R3480 B2702A 18DA 25 @z 18D BCs BKTZ IF NO
03490 @2703A 18DC CLRD

A LDU KEYBUF~BKs X
A
A
A
A
E
23500 @8z2704A 1BDE ED ac A BKTZ 8TD STRKEY-BKs X
A
A
A
A
A
c

L.bb STRKEY-BK» X DISPLACEMENT TO SAVE LOC
LEAU DsU POINT AT SAVE LOC

ADDD #1 POINT TO NEXT SAVE LOC

CMPD KEYSZ-BKs X WRAP AROUND?

83510 82795A 18BED EC o8 LDD KEYCNT-BKs X

B352@ B2704A 1BEZ (3 .03 ADDD #1

B3538 82707A 18E5 ED a8 8TD KEYCNT-BKs X

@3540 @27@8A 18E7 35 ez PULS A

@3558 @2709A 1BE? A7 C4 STA sU

@3568 B2710A 18ER 2@ BF 18A BRA BKTMEA GO CHECK FOR ANOTHER KEY DOWN

23570 Bz711 *

23580 2712 H eI F AT TN TN IEIEIE I TN I I I I I I JETE T I IR IR

03598 @713 * COPY FILE OVERLAY

83600 B2714 * GIVEN: B (BIT @) = ZERO IF NO DISK SWAPPINGs 1 IF SWAPPING
83618 BZ715 * U=> S0URCE FILE DCB {(UNOPENED)

B362D B2716 * Y-> DEST FILE DCB (UNOPENED)

Q34630 82717 * USES MEMORY FROM "OLYLOC® TO “MAXMEM®

03640 02718 * USES LAST LINE ON SCREEN FOR PROMPTS IF SWAPPING DISKETTES
@3650 B2719 B R O s e 2]
03660 @2720A 18ED @1BF A BR17 FDB B18-B17

B3670 B2721A 1BEF 34 76 A PSHS DiXyYsU

EJiASM

PAGE @48 O0LYZ .5A:0 DOS —~ PAGING & OVERLAYS

Q3680 BI722A 18F1 32 7A A LEAS 12"

03690 DZ723A 1BF3 20 60 1953 BRA B17A

@3780 Bz724 * »S COUNT OF SECTORS IN MEMORY

83710 @A27Z5 * 148 EOF SW

03728 Q2726 * F9B=NEXT INPUT PRN

03738 82727 * 43 8=NEXT OUTPUT PRN

3740 D2728 * &48=PGS AVAIL

03750 Bz729 * 7:8=8WAP BW

@3760 B2730 * B;5=BASE

03778 D731 * 18s5=DEST DCE ADDR

Q3780 Q732 * 12.5=80URCE DCB ADDR

03798 B2733 * 14:G=RET ADDR

23820 @2734A 18F3 4¢ A B17ML FCC /LOAD SOURCE DISKETTE /
B3818 B2735A 1913 4C A BI7MZ FCC /LOAD DESTINATION DISKETTE /
Q3820 BI736A 1735 4C A BI7M3 FCC /JLOAD S Y S TEM DISKETTE /
Q3832 82737 *

03840 @2738 * SETUP STACK

Q3850 Bz73%A 1955 C4 a1 A B17A ANDB #1 SET 70 1 OR B

B3B6B B2740A 1237 AL cg 2t A LDA DCEBDRVsU

B3870 BZ741A 195A Al AB 21 A CMPA DCBDRVsY SAME DRIVE?

Q3880 BZ74ZA 195D 27 a1 1968 BEG@ Bi78 IF YES

03890 92743A 193F SF CLRB

Q3700 BZT44A 1968 E7 67 A B17B 8TR 758

03910 @E7435A 1962 4F CLRA

@3920 B2746A 1963 BF CLRB

B3930 BZ747A 1964 ED E4 A STD [X=]

B3940 BZ748A 1966 ED b2 A STD 258 STARTING INPUT PRN
83950 BZ749A 1968 ED b4 A STD 448 STARTING OQUTPUT PRN
B3960 BZ750A 196A FC @8Dc A LDD >MAXMEM

23970 @:731A 196D B3 BbS A SUBD FOLYLOC HOW MUCH MEM TO WORK WITH
@3980 BZ752A 1970 2 a3 1975 BCS B1781 IF NOT ENOQUGH

Q3998 BZ753A 1972 4D TSTA

BABDB Bz754A 1973 26 51 19C6 BNE B17C IF AT LEAST 1 PAGE
D4218 @2735A 1975 Bé iD A B17B1 LDA #ERRZ9 NOT ENQUGH MEM

B40z0 B2736 *

04038 B2737 * COMMON EXIT

D4B4B BZ758A 1977 A7 &6 A B17X 8TA 638

4050 BZ7S59A 1979 &D &7 A T8T 748

B406D B2T76OA 1978 27 i@ 198D BE& B17XIT

84070 Q2761 * RECOVER SYSTEM DISKETTE

B4080 @2762A 197D AE 68 A LDX 8+8

D4B90 BZ763A 197F 3D 88 48 A LEAX B17M3~B17sX

04100 Qz764A 1982 BD @D 1991 B8R B17WTE

841108 B2765A 1984 CE BoLS A LDU #MBGDCR

@412 Qx766A 1987 DOS OPENs INPUT TO RE-LOAD FAT TABLE
04130 B2767A 198D 32 &b A P17XIT LEAS 618

Q4140 B2768A 198F 33 Fé A PULS DiXsYsUsPC

Q4150 B2769 *

B4160 B277@ * DISPLAY FLASHING MSG & WAIT FOR DISKETTE SWAP
P4170 B2771A 1991 1@8E BSED A BI7WTE LDY #$400+512-32 (LAST LINE)

Q4182 B2Z7724 1995 Cb4 zZ0 A LDE #32

4190 D2773A 1997 Ab 8@ A BI7WT1 LDA s X+

Q4200 QZ774A 1999 A7 AR A STA 1Y+

B421@ BZ773A 1998 SA DECE

B4220 B2776A 19%C 26 Fo 1997 BNE B17WT1

Q43230 B2T777A 199E 7F 2621 A CL.R FCLOCK+1

R4Z4D BZ77BA 19A1 B17WTZ SYSTEM POLCAT WAIT FOR KEYSTROKE
B425@ B2779A 19A5 81 @D A CMPA #$0D

EDIASM

PAGE

04260
84278
04280
04290
04300
84310
24320
24330
04340
04350
P4360
24370
04380
24390
04400
04410
04420
04430
04440
04450
04460
24470
84480
04499
04500
24510
04520
24530
D4540
B4550
4560
24570
24580
24590
04600
24610
04620
D44630
04640
04650
B4668
04670
04680
04590
04700
04710
84720
04730
84740
B4750
04760
24770
04780
04790
24808
24810
04820
04830

B49 OLYZ

B27808A
DZ7814A
QBZ78ZA
BL783A
BZ784A
27834
B2786A
Bz7874A
@2788A
@z789A
BZ790A
B2791A
BZ792A
B2793A
B2794A
R2795A
B2796
BI797A
B2798
B2799
B2BB2A
BzB@1A
2z8l2A
2z8@3A
BZBB4AA
22885
B28B6A
22807A
D28BBA
B2BO9A
BzB10A
2eB11A
B2812A
0zB813a
@z814
[Pz813A
B2816A
2z817A
R2818A
@zB19A
@2820A
2BZ1A
@2BZZA
22B23A
BZBz4A
@825
2826
D2BZ7A
B282BA
BzBz9A
@2B30A
02B31A
22832A
Q28334
228344
B2B8354A
Dz836A
@z8374a

1947
19A9
19AC
19AF
1981
1982
1984
1986
1988
1984
19BC
19BE
19BF
19C1
19C3
19C5

19C6

19C8
19CA
19CD
1902
19DZ2

19D4
19D&
19D8
19DA
19E@
19EZ
19E4
19E7

19€9
19EC
19EE
15F®
19F2
19F4
19F6
19F7
19F9
19FR

19FD
1ADD
1ABZ
1A@5
1A07
1AQA
1ABD
1A1Q
1A13
1A15
1A17

. BAz

27
8E
BS
84
48
34
c6
Ab
84
AA
A7
3A
26
35
=0
39

A7

EE
FC
ED
6D

27

AE
30
8D

26
EC
ED

26

10AE
33
31
Co6
Ab
A7
5A
26
EE
6F

BD
26
BD
26
EC
c3
ED
&6C
6C
E&
El

[}

ic
a5
1)
Z0

2z
z0
84
BF
E4
80

F5
Bz
DC

b6b

6C
86
8
67
@&

68
=]
B7

93
&2
c8

12

bA
4B
2B
15
co
AD

EQ

21

25
24

12C5

>»>>2>>> PD>DP

DOS - PAGING & OVERLAYS

BEG B17WTX
LDX #$400+512-32
LDbaA >CLOCK+1
ANDA #4520
L8LA
PSHE A
LpB #32
B17WT3 LDA s X
ANDA #410111111
ORA LR=]
STA s X+
DECE
BNE B17WT3
PULS A
BRA B17WTZ
B17WTX RTS
*
B17C STA 638 PAGES AVAILABLE
*
* LOOP TO COPY FILE
B17D LDy 1248 SOURCE
LDD OLYLOC
STD DCBBUFsU
T8T 73S SWAPPING?
BEQ B17D0 IF NO
* WAIT FOR SOURCE DISKETTE
LDX 8.8
LEAX B17M1~B17.X
BSR B17WTE
B17D@ DOS OPEN»s INPUT
BNE B17X IF NOT FOUND
L.DD 218
STD DCBPRNsU SET STARTING SECTOR NUMBER
BNE Bi7E IF NOT FIRST TIME
* FIRST TIME -~ SAVE DIRECTORY DATA IN OUTPUT DCB
LDY 10,8
LEAU 115U
LEAY 11,vY EXCEPT FOR NAME
LDB #32-11
17Dl LDA sU+
s5TA sY+
DECB
BNE B17D1
LDU 12,8 SOURCE
B17E CLR + 8 SECTORS IN MEMORY
*
* LOAD LOOP
Bi17F JSR CSENT XLATE PRN INTO TRACK & SECTOR
BNE Bi17F1 IF OUT OF RANGE
JSR DSKRED DO PHYSICAL I/0
ENE B17XX IF I/9 ERR
LDD DCBPRNsU
ADDD #1
STD DCBPRN:U
INC DCBBUF s U
INC » 8 COUNT SECTORS READ
LDe '8
CMPB 6:8 IS BUFFER FULL

EJASM

PAGE

Q4848
248530
04860
84870
24880
04890
24700
04910
24920
24930
24940
24950
24960
84970
245882
84990
25000
@510
05920
25832
285049
85050
25262
25870
05080
285099
25100
83110
25120
85132
B5140
853150
23160
85172
85180
85192
25200
25210
05220
23230
25240
03252
B5260
83270
85280
85290
2530
85310
@5320
05330
85340
03350
23360
85370
25380
25390
25400
25410

2858 OoLyz

@z838A
228394
Q2840A
22841

82842

B2843A
82844

02845

BZBabA
B2847A
228484
22B49A
B2850A
22851

@z2852

B2853A
28544
@zB853A
@2856A
@z2857A
B2858A
D2859A
B2B6BA
BB61A
B2B62A
B2Bb3A
B2B64A
D28465A
228664

02867

328684
D2869A
@az870A
22871A
Rz872A
82873

@2874

@82875A
@2B876A
Qz877A
@2878A
@z879

228804
22881

Bz882

@z2883A
028844
22885A
228856A
22887A
2z888A
028894
02890A
QzB91A
BzBI2A
22893

22894

02895A

1A19
1A1B
1A1D

1AZ0

1AZZ
1A25
1A27
1AZD
1AZF

1A31
1A33
1A35
1A37
1A3A
1A3D
1A3F
1A42
1A43
1A4B
1A4D
1A4F
1A51

1A53
1A55
1A57
1A5D
1A5F

1A61
1A63
1A65
1A67

1A69

1A6C
1ALF
1A71
1A74
1A78
1A78
1A7E
1A81
1AB4
1AB6

1A88

.8A:

26
2@
16

&C

EC
ED

AL
27

&D

AE
30
17
EE
FC
ED

27
B1
27
=0

EC

26

86
20

EC
27
86
20

ED

BD
26
BD
1026
EC
c3
ED
&C
6A
26

EC

]

EZ 19FD
a5 1Az2
FF37 1977
61 A
c8 z9 A
62 A
E4 A
EC 1A1D
67 A
a8 1A3D
68 A
28 28 A
FF54 1991
6A A
2625 A
c8 24 A
86 1A53
ac A
10 1A61
CA 1A1D
64 A
1z 1A69
1E A
BC 1A1D
b4 A
B4 1469
1F A
B4 1ALD
<8 29 A
@D9F A
AC 1A1D
BCEA A
FEFF 1977
cB 29 A
2001 A
cg 29 A
€8 24 A
E4 A
E4 1A6C

<8 29 A

DOS - PAGING & OVERLAYS

BNE B17F IF NO
BRA B17G 60 WRITE IT
B17XX LERA B17X THIS STMT USED AS AN UP-~LINK

*
* INPUT AT END - BET EOF 8SW
B17F1 INC 1.8

*
* CLOSE INPUT
B17G LDD DCBPRNs U

STD Zs8 SAVE FOR NEXT BATCH
DOS CLOSEs IT
LbA [X=] ANY SECTORS READ?
BEQ@ B17XX IF NOs I°M DONE
*
* OPEN OUTPUT
TST 78 SWAPPING?
BEQ B17H IF NO
LDX 8:8

LEAX B17M2-B174 X

LBSR B17WTE WAIT FOR DESTINATION DISKETTE
B17H LDU 1@8 OUTPUT FILE DCB

L.DD >OLYLOC START OF BUFFER

STD DCBBUF U

DOS OPEN»s OUTPUT+FAST

BEG B17H1 IF FILE EXISTS
CMPA #12

BEQ B17Hz IF CREATED

BRA B17XX IF OTHER ERROR

*
* FILE EXISTS
B17H1 LDD 499
BNE B171 IF NOT FIRST TIMEs ITS OK
DOS CLOBESIT
LDA #ERR30
BRA B17XX

* FILE CREATED
B17HZ LDD 418
BEQ B171 IF FIRST TIME, OK
LDA H#ERR31 MISC ERR
BRA B17XX%
*
B171 8TD DCBPRN, U
*
* WRITE LOOP
B17J JBR CSENT XLATE PRN INTO TRACK & SECTOR
BNE B17XX
JSR DSKWRT WRITE SECTOR
LBNE B17X
LDD DCEBPRNsU
ADDD #1
8TD DCBPRNs U
INC DCBBUF, U
DEC [R=] COUNT DOWN SECTORS WRITTEN
BNE B17J

*
* CLOSE QUTPUT
LDD DCBFRNs U

ENASM

PAGE

25420
05430
25440
85450
23460
83470
03480
25490
P55008
85510
85520
23530
0554@
255508
05560
@557@
23580
03592
854600
256102
25620
85630
25640
8546592
R566@
054670
25680
85690
23700
P571@
@572
85730
25749
85750
@5760
@5770
a378a@
23750
258080
25810
25820
25830
25840
25850
25840
85870
25880
25892
255092
R591@
03720
05930
25748
25958
03960
85972
25980
85990

@851 OLYZ2

B828956A
22897A
22898A
228994
229084
@3z9014A
DZ7A2A
B2903A
B2904A
BZIB3A
B2906A
@z7e74A
@z9e8

Bx9e9

Bz71@

Bz911

02912

RZF13A
B2714

Bz715A
B2716A
BZF17A
@z718A
B2F19A
B2Z20A
B2921A
Qz9zzA
BZP23A
DZ29244A
B2925A
B2I26A
@z927

B2928A
BZ9Z29A
Rz930A
BZ931A
@2932A
Qz933A
PZ734A
B2935A
R2I3bA
RZ937A
@2938A
02939A
B2940A
227414
B2942A
R2?43A
B2R44A
B2F43A
BER46A
D2947A
B29484
B2949A
B2750A
B2I51A
BZF52A
B2953A

1A88B
148D
1490
1A93
1495
1497
1499
1A9C
1AA2
1AA3
1485
1AA9

1AAC

1AAE
1ABB
1ABZ
1ABS
1AB7
1AB?
1ABE
1ARD
1AC1
1AC3
1ACS
1AC7

1ACT
1ACC
1ACE
1AD1
1AD3
1ADS
1AD7
1AD9
1ADB
1ADD
1ADF
1AE3
1AES
1AE6
1AESB
1AEA
1AEC
1AEE
1AFQ
1AFZ
1AF4
1AF&
1AF8
1AFA
1AFC
1AFE

.BAt

ED
83
ED
AE
EC
ED
E7

4F
&D
1026
16

86
34
CE
E&
Ab
81

1183
23
CE
5A
26

7F
32
Fé
C4
27
86
=@
86
A7
34

35
4D
27
81
27
81
27
81
27
81
27
81

81
23

[}

b4
8.1
Cc8 14
6C

@E

4E

c8 16

&1
FF74
FF1C

EE

@621
5F
B621
10
B4
a8
2z
1B
84
5@

50

Eb&
@3
50
aA
1A
5E

ap
44
08
34
20

CE

P>

1A1D
19C8

P>

1ACE
1B3C
1882A
1B15

A
183C
18308

1ACE

DOS — PAGING & QVERLAYS

STD 458 SAVE FOR NEXT BATCH
SUBD #1

STD DCBMRB: U

LDX 1248 SOURCE DCB

LDD DCBNLSs X

STD DCBNLS»V

sTB DCBMRB+2s U

DOS CLOSES IT

CL.RA

787 1.5 AT EOF?

LBNE B17XX I°M DONE

LBRA B17D G0 COPY ANOTHER BATCH OF SECTORS

*
L R S e R
* GET MULTIPLE USER INPUTS
* GIVEN B=NUMBER OF INPUTS
F AT K AN IR
gig FDB B19-B18
INPTS EQU 18

LDA #1
PSHS D
=3 %=1 LDU #4400
LDB '8
B18C LDA sU+
CMPA #$58 L

BE® B18D

CMPU #$600

BCS Bi18cC

Ly #6401
818D DECE

BNE 818C
* INPUT A FIELD

CLR CLOCK+1
LEAX ~1sU
B1BE LDB CLOCK+1
ANDB #16
BEG B18E1L
LDA #$58
BRA B1BEZ
BIBE1 LDA #$1B

B18EZ GSTA s X
PSHS XsU
SYSTEM POLCAT
PULS XsU
TSTA
BEQ B1BE
CMPA HBREAK
BE@ 818X
CMPA #DOWN
BEQ B18F
CMPA #UP
BE® B18G
CMPA HENTER
BE® B18X
CMPA #LEFT
BE® B181
CMPA #4220

BCS B18BE

PAGE

B600B0
06010
BoB20
6830
B6040
B&B50
Q60602
06870
060890
86870
26100
06110
06120
06130
B6140
Q6158
86160
B&170
B6180
06192
B6200
Q5210
B6220
R6230
6240
86259
D626
B6270
06280
86250
8463020
B6310
B6320
26330
26340
Q6350
B6360
6370
B&6380
06390
06400
85410
B6420
B6430
B644@
Q6450
B6460
26470
D6480
26490
865002
06310
286520
86530
B6540
26550
@6560
86570

@5z

B2954A
B29335A
B2I56A
@zI574A
B2958A
B2959

B260A
@z961A
B2962A
BZF63A
DEFb4A
B29654A
02966

BZI&7A
D296B8A
BLI6E9A
29704
B2971A
B2972A
BZ973A
@z974A
@2975

RZI76A
B2977A
B29784
R2I79A
Bz980A
02981A
Bz982

8z983A
B2984A
229834
DzF86A
Bz9874A
R2788A
22989

D2990A
B2991A
B29924
02993A
B29944A
Bz993

02996

@z2997

Qz998

29994
23000

@30214A
@3082A
B3803A
A3004A
30354
2300564
B30B7A
230084
232074
B3210A
B3011A

oLyz

18020
1B@z
1B04
1B
1R@8

180A
1B@C
1B0E
1B10@
1811
1813

1R15
1817
1B19
1818
181C
1B1E
1BZz0
182z

1B24
1Bzé
1828
1BZA
1B2C
1B2ZE

1830
1B32
1834
1836
1B38
1B3A

1B3C
1R3E
1B40
1B42
1844

1B43

1847
1844
1B4C
1B4E
1B5@
185z
1B55
i1B57
iB3e
1B3E
1860

. 8A:

81
25
81
25
20

Ab
Al
24
4C
A7
Z0

Ab
81
27
44
A7
856
A7

2e

8A
A7
AL
81

20

Ab
84
81
28
Ab
20

1F
32
86
A7
39

BE
86
A7
Ab
A7
[He
ED
108E
18AF
Ab
81

2

5B
20
68
ic
Ca

E4
61
RE

E4
as

E4
21
83

E4
f=1=4
84
8E

40
ca
C4
5D
DC
9E

cz
BF
1B
96
o
Fb

89
62
5B
84

2289
2013
conBs
a2z
88
C4
80
1183

B6C8
21
41
48

A
1824

1BZ24
1ACE

>>D>>

DOS — PAGING & OVERLAYS

CMPA #E3R
BCE B18H
CMPA #560
Bes B18H
BRA B18E

* DOWN

B18F LDA 58
CMPA 1,8
BCC B18G1
INCA
8TA 8
BRA B186G1

* UP

B186 LDA 8
CMPA #1
BEG B186G1
DECA
STA ER=1

B18G1 LDA #$5B
STA » X
BRA giae

* TEXT CHR

B218H ORA #4540
8TA s U+
LDA [y
CMPA #43D
BEQ B18F
BRA B18E

* BACK ARROW

B181I LDA s—=U
ANDA #$BF
CMPA #+1B
BNE BIBE
LDA s U+
ERA B181

* BREAK OR ENTER

B18X TFR AsB
LEAS 248
LDA #4658
8TA s X
RTS

*

IF AT END ALREADY

L e I T T T T
* SCAN FOR SELECTED DIRECTORY ENTRY
FETEI AN NI KA K I KR I IR

8219 FDBE BZB~B19
SCNDIR EQU 19

LDX £CO0s

LDA #2

STA s X+

LDA [RY)

STA s X+

LDD #$1103

STD 1 X+

LDY #SYSBUF

sSTY 15X

LDA 1,V
B194 CMPA #72

PARAMETER AREA
READ

DRIVE
TRACK & SECTOR
LEAVE X -> SECTOR

STARTING OCCURANCE
ANY MORE ON THIS DRIVE?

PAGE @33 OLYZ .8A:0 DOS ~ PAGING & OVERLAYS

B658G 0301zA 1B62Z 24 63 18€9 BCC B19NO

D6390 B3B13A 1864 86 28 A Ri9B SUBA #8

Q4600 B3B14A 1BG6 25 @4 186C B{S B19C IF IN THIS SECTOR
06610 B3B15A 1BLB 4C 84) INC " X

P&62D B3R16A 1BLHA 20 F8 1864 BRA B19B

85630 B3B17A 1BLC BE 28 A B19C ADDA #8

B6640 @3018A 1BGE Z7 a7 1877 BE® 819D

B&6650 B3019A 1B70 C6 20 A LDB #32

BL66R D3028A 1B72 3D MUL DISPLACEMENT IN THIS SECTOR
6670 B3BZIA 1B73 31 AB A LEAY D»Y OFFSET TO 18T ENT TO SCAN
B6680 B3B22A 1B75 20 ac 1883 BRA B19D1

06698 @3QZ3A 1BR77 34 7@ A B19D PSHS XsYsU

B4700 @3Bz4A 1B79 AD 9F COB4 A JSR L $CB024 1

0671@ @3@25A 1B7D 35 70 A PULS XsYsU

B6720 B3VZLA 1B7F AL @3 A LDA 3sX RESULT

R&738 B3D27A 1BEBL 24 46 1BCY BNE B19NO IF 1/0 ERR

B674@ B3DZB # COMPARE AGAINST ARGUMENT

D6750 A3B27 * REGISTERS:X->SECTOR NBR

B6760 B3@30 * Y-*ENTRY IN BUFFER

06772 @3831 * U~->8EARCH ARGUMENT

67838 B3B3zA 1BB3 34 60 A B19D1 PSHS YsU

26790 @3233A 1B85 C6 BB A LDB #11 BYTES TO COMPARE
26800 B3234A 1B87 33 42 A LEAY 2 U TO START OF ARGUMENT
26810 @3235A 1BBY Ab A4 A LDA Y

Q6820 A3036A 1BBE 27 ac 1R99 BE® B19E1L IF EMPTY ENTRY
@46830 B3037A 1B8D ZB 2A 1899 BMI B19E1 IF END OF DIRECTORY
6840 B3038BA 1BBF Ab ca A BISE L.DA s U+

246839 B3039A 1B91 81 2A A CMPA #7 % WILDCARD?

06860 B3V4BA 1BF3 27 1F 1BB4 BEQ Bi9F

Q6870 B3B41A 1BI5 Al AR A CMPA 1Y+

06880 B3042A 1BIT7 27 ib 1BBS BE® B19G

B6BTB B3ID43 * NO MATCH

246900 Q3044A 1B99 33 6@ A B19E1 PULS YU

B4691D O3045A 1B9B 6C 41 A INC 1,V

Q6920 B3046A L1BID AL 41 A LDA 15U

26930 B3047A 1B9F 81 48 A CHMPA #72 ANY MORE?

6948 @3048A 1BAL 24 26 1BC9 BCC B19NO

B6950 @3049A 1BA3 31 A8 0 A LEAY 32:Y POINT AT NEXT ENTRY
B6760 O3D50A 1BA&L 108C 07C8 A CMPY #BYSBUF +256

6970 A3051A 1BAA 25 D7 1883 BCS Bi9D}

R46980 @3B52 * READ NEXT SECTOR

26992 B3053A 1BAC 108E 06C8B A LDy #B8YSBUF

27000 @3254A 1BB@ &C 84 A INC X

87010 03055A 1BB2 Z0 c3 1877 BRA B19D

@7020 B3BS6A 1BR4 AL AR A B19F LDA sY+ BYPASS SOURCE CHR
07830 B3B57A 1BB& SA B19G DECR

07842 B3I@38A 1BB7 26 D& 1B8F BNE B1RE

27050 93059 * MATCH FOUND

R70680 B3@H0A 1BBY 35 60 A PULS YU

07278- D3B51A 1BBRB &C 41 A INC 15U SEARCH CONTINUES WITH NEXT ENTRY
Q7280 B3062A 1BBD 33 4D A LEAU 2+11.U

Q7892 B3B43A 1BBF Cé& z@ A LDB #32

B7102 B3BL4A 1BCL AS AD A B19H LDA sY+

27110 @308565A 1BC3 A7 ca A 8STA 2 U+

B7120 B3B66A 1BCS SA DECB

D713 A3B<A 1BCS 26 Fe 1BC1 BNE B19H

27140 @3048A 1BCB 39 RTS

B71590 03B69A 1BCT? B& FF A BIFNO LDA #EFF

PAGE

27160
27170
27180
@71%0
87200
B7z1@
R722@
07230
Q7240
Q7252
37260
07272
7280
87270
27300
7310
@a73z0
7332
87340
TOTAL
TOTAL

@54 OLYZ .5A:0
A3@70A 1BCB A7 41
03071A 1BCD 39

@307z

A3273A 1BCE o0a1
83274A 18BCF "3
B3875

Q3076

230877A 1BDD 2001
23878 18D
23879 2acs
23080 0718
23081 1246
a3e82 BEA4
23883 ZOER
Q3084 10AZ
23085 18A5
23034 2889
o3ea7

03088

ERRORS 00020--00000
WARNINGS 020000--20808

>

»P>>r>>2>>P>D>

DOS - PAGING & OVERLAYS

*
BZ@
B21
*

LASTPG
B2z
BKSZ
PGMSZ
TOTSZ
START
END
ENTRY
LOWUSR
FIXIT

8TA
RTS

RMB
RMB

OPT
RMB
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
TTL
END

1,0 SAY NO MORE

1

1

L

1 END OF OVERLAYS
LASTPG

B17-B1&6

OVRLAY—CORGIN-1

LASTPG-ORGIN-1

DoOS START OF DISK FILE

LASTPG+DOS~0RGIN END OF DISK FILE

OVRLAY INITIAL ENTRY POINT INTO PROGRAM
OVRLAY+3 LOWEST POINT WHERE USER PGM CAN LOAD
$1EQ0-LASTPG+ORGIN POINT THAT BASIC CLOBBERS
DOS - CROSS REFERENCE

/AO (Absolute origin)
/IM (Assemble into memory)

/LP (Assembiler listing)
/MO (Manual origin)
/NL (No listing)
/NO (No object code in memory)
/NS (No symbol table)
/SR (Single record)
/SR “switch”
/SS (Short screen listing)
/WE (Wait on assembly errors)
/WS (With symbols)

6809 Mnemonics, Reference
6809 Registers

Absolute Origin Assembly
Addressing-Mode Characters
Addressing Modes
Direct Addressing
Extended Addressing
Immediate Addressing
Indexed Addressing
Indirect Addressing
Inherent Addressing
Relative Addressing
Alphanumeric Character Codes
Arithmetic Operators
Addition (+)
Subtraction (—)
Multiplication (*)
Division (DIV.)o an, 36
Modulus (MOD.). ... 36
Positive (+)
Negative (—)
ASCIl Codes
Alphanumeric Character

......................
............................
...............................

Graphic Character
Video Control
ASCII Mode
Assembler Commands
Assembler Commands and Switches,

Assembler Pseudo Ops, Reference 85
Assembling ... 25
Assembling for DOSt 30
Assembling for Stand-Alone ZBUG................ 30
Assembly Display Listing 26
Assembly Listing, Changing...................... 49
COND......coi i e 49
ENDC ... 49
INCLUDEt es 50
OPT . e e 49
PAGE ...t 49
TITLE oo 49

— B —
Backupsoovii e 3
BASICCommand..............ccciiiiineniinnn 23
Breakpoints i i 32
Buffers e e 61
ByteMode...........cooiiiii 17

— C —
ChangingMemory ...ttt 18
CHROUT ... e 58
Clock Displaycovveviiiiiic i, 16
ClosingaDiskFile................coviviinn s 62
ColorCodescovviiiiiiiiiiii i 105
Command ... 42
Complex Operationsoiiiiinnn, 37
COND ... i et et 49
Controlling Assembly Origin. 47
END. ..o e 47
ORG i 47
CopyCommandcooiiiieinnniiiinennns 22
Cstartline, range, increment 22
Copy Files . ..o i 15
Cstartline, range, increment...................... 22

— D —
Data Control Block.ccovviiiiiiinnnn. 61
Data Control Block (DCB), Reference 91
Defining Symbols............c.ccooiiiiiiiint 47
EQU .. e 48
SET ittt 48
DeleteCommand..............ccovvviiiiinn.. .. 22
Drange ... 22
Direct ACCESSovviieii it 65
Direct Addressing.ot 45
Directory. ... i e 15
Disk AllocationMap............ .o, 15
Disk Assemblyiiiiii i, 30
Assembling forDOS. 30
Assembling Stand-Alone ZBUG.............. 30
DisplayModest 31

Half-SymbolicModec.oinnt 32

Numeric Mode...............oooviiiiinnss 32 INPUEMOGE. . ..o oo e eeee e, 35

SymbolicMode ... 32 Insert CoOMMANG.ovirrerreerannneenennnss 22
DOS Error Codes, Reference 101 Istartline, incrementc.coeeueen. 22
DOS Routines............cooovvieiiinnnn. 10, 61 INSErtNG Data veveeraeenaeiiaannn. 48
DOS Routines, Reference 95 FOB . . o e 48
Drangeoouiiiiiiiiiniii i 22 FCC . . 48

FDB. ...ttt 48
—E— BMB ..t e 48
EditCommand ..., 21 IStartling, iNCrEMeNtooueeeienenenenann. 22

EliNe ..ot e 21

Editor Commands, Reference 71 —L—
EDTASM ... 5 1YY= PP 42
EDTASMOVviiiiiiiiii e 5 LD fIIBSPEC .o ee e et 23
Eline ... e 21 LDA fil@SPEC v v e e e eiae e 23
END ...ttt e 47 Left Bracket ([) ... ovvvvnereeeeneeeaeneeeenans 6
ENDC .. .ot 49 N0} N 1 AR 27
EQU ... st e 48 Load Commandccviit it 23
Error Codes, DOS Reference 101 LD fIlESPEC. . . v e e e e 23
Error Messages, EDTASM Reference 81 LDA flOSPEC .. .o eeveeeiaeeiaeeeennns 23
Examination Modest 17 Logical Operators.vevueevunaneennins 37

ASClIIMode.........coiii s 18 ShIft (<)« ettt 37

ByteModeoiiiii 17 LogicalAND ((AND.)vvveeeennaninnnnn. 37

Mnemonic Modet 18 InClusiveOR ((OR.)o ive e 37

WordModecoviiininnnnn 18 ExclusiveOR (XOR.)cvvvieiniiineennn. 37
Examining Memorycooiiiiiii it 17 Complement (NOT.) ...ovvveiieennaannnn. 37
Examining Registers and Flags................... 33
Executing a Program from ZBUG 32 — M-

Extended Addressing. ...t 43 MACTO Call. ..ottt et 53

Indirect Addressing.o.aennn 43 Macro, Calling.ovneeeeeeennneenianeneans 51
Extended Indirect Addressing 43 Macro, Defining.ovveeeeaaeeeeiiaannnn 51

Macro, Dummy Valuesooviiiiinens 53

—F— Macro, Format. i 52

FCB ... 48 Macro Deflnition 52

FOC et ettt 48 Macro, Passing ValUescceeenenrs. 52

FDB. .. .oov e 48 1V 1o o 1 Y 51

Flags, Examiningcoooiiiiiiiiinnans 33 Manual Origin ASSEMbIYoueerereenn 29

FLDFLGitieiiin e 27 MEMOTY MAP .« + v eeeeeeeeeeeeaneeeeeens 103

Formattingccovvnneeenniinn e, 3 MREMONIC MOGE . - - v e v oo 18

G MNemonICSiiiii ittt ia e 10

Graphic Character Codes.................... ... 105 Mnemonics, 6809 Reference..................... 109
H —N-—=

- Nstartline, incrementcccivient. 22

Half-Symbolic Mode.ocviiiiinnn 32 Numbering System Modesc.cvene-. 35

Hrangeoooviiii e 21 INPUEMOGE . . - v e eeeeenee e eeeeeeeaneen 35

| OutputMode ..ot 35

Immediate Addressing.ovviiienaeenaen 43 Numeric Mode.coovnmnenenmneeneeee 32

INCLUDE.ottt ieeeens 50

Indexed Addressing.oovvveneniianan, 43 —0—

Indirect Addressing _________________________ 44 Opcogje R R LR R LR 9
Indexed Indirect Addressing.coeeevnnn. 44 Openinga Disk File.................oviviennn. 62
Indirect ADAreSsingvvveeeerneeenneernnns 43 Operands...........coovviiniiniiiiiiiiii 36

Inherent Addressing.oovvvvnvneannennens 43 Operations.ovirieiiiii et 36

Operands ...t iiiniinnn.. 36

Operators............c.coiiiiniiinnnnan.. 36
Arithmetic ..., 36
Logical. ... 37
Relationalccoiviiii 37
Complex Operations. 37
Operators.coviiiiiii i 10, 36
Arithmetic.............. .. i, 36
Logicalccoiiiiiii i 37
Relationalccoiiiiiinii i 37
OPT e 49
ORG i e e 47
Origination Offset Assembly...................... 28
OutputModettt 35
—P—
PAGE ... e e 49
PAGLEN i i 27
PAGWID i 27
0 7. N 57
Prange ... e 21
PrintCommand....................cciiiviinven. 21
Prange i 21
PrinterCommands................cooiviin... 21
Hrange i ... 21
Trange e 21
PrOCESSO . o ittt e e 9
Registers o i 9
Opcode.oovvii 9
Program Editor Commands 21
CopyCommandcouuunn. 22
Cstartline, range,
increment i, 22
Delete Command 22
Drange i 22
EditCommand....................c.ooou... 21
Eline........... .o i 21
InsetCommand 22
Istartline, increment 22
loadCommand.ccoivivviinnn.. 23
LD filespec.................t 23
LDAfilespec..................... 23
PrintCommand............................ 21
Prange............. ...l 21
PrinterCommandsccovenonn.. 21
Hrange il 21
Trange.c.oov it 21
Renumber Command....................... 22
Nstartline, increment................... 22
Replace Command......................... 22
Rstartline, increment................... 22
WriteCommandccovievvn... 23
WD filespeCcccoviiiiiinnan.. 23

ZBUGCommandciviinnn.. 22

Pseudo Ops...........cooiiiiiniiii. 10, 47
Pseudo Ops, Reference 85
—R—

Read/Write Optionot 66
ReadingaDiskFile........................... .. 65
Read to a File Sample Program 67
Registerso i 9

6809 ... 41
Registers, Examining............................ 33
Relational Operatorsc.cvivivnn.. 37

Equalto (EQU.)....... ...t 37

Not Equalto (NEQ.)ccoei.... 37
Relative Addressing............................. 44
Renumber Command 22

Nstartline, increment 22
ReplaceCommand 22

Rstartline, increment 22

Rightbracket () 6

BMB e 48
ROMRoutinescciiiinnn.., 10, 57

CHROUT ... i i 58

POLCAT ... e 57
ROM Routines, Reference 89
Routines

DOS ... e 10

ROM ... 10
Rstartline, increment 22

_—S —

Sample Program.................. 5, 11
Sample Programs.ccoviiiiinn... 125
Saving Memory from ZBUG...................... 34
SET. e 48
Sequential Accesst 65
Single Stepping. 33
Switches

A e 25

MM e 25

I 25, 27

MO e 25

INL. e 25, 27

INO 25

INS 25, 27

ISR 7,25

1 25

MWE 25, 27

WS e 25
SymbolicMode.............. ... 32
Symbols............. .. e 10

ExamineMemory il 32

WD filespec
Word Mode

WriteCommandciiviriiinrnienernens 23

WD filespec.........covviiiiiiiniiiienns 23
Write to a File Sample Program 67
Writinga Disk File ...t 65

—Z7—
ZBUG Calculatorc.oovviiiiiinnineiennes 35
ZBUG Commandcoviiiiiiinnieennnanes 22
ZBUG Commandscoviiiinnennnnn. 17, 31

ZBUG Commands Reference.................... 77

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U. K.
91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7N

263254-12/83-TM Printed in U.S.A.

	Cover
	Table of Contents
	Section I - Getting Started
	Chapter 1 - Preparing Diskettes
	Chapter 2 - Running a Sample Program
	Chapter 3 - Overview

	Section II - Commands
	Chapter 4 - Using the DOS Menu
	Chapter 5 - Examining Memory
	Chapter 6 - Editing the Program Editor Commands
	Chapter 7 - Assembling the Program
	Chapter 8 - Debugging the Program
	Chapter 9 - Using the ZBUG Calculator

	Section III - Assembly Language
	Chapter 10 - Writing the Program
	Chapter 11 - Using Pseudo Ops
	Chapter 12 - Using Macros

	Section IV - ROM and DOS Routines
	Chapter 13 - Using the Keyboard and Video Display
	Chapter 14 - Opening and Closing a Disk File
	Chapter 15 - Reading and Writing a Disk File

	Section V - Reference
	Reference A - Editor Commands
	Reference B - Assembler Commands and Switches
	Reference C - ZBUG Commands
	Reference D - EDTASM Error Messages
	Reference E - Assembler Pseudo Ops
	Reference F - ROM Routines
	Reference G - DOS Disk Data Control Block
	Reference H - DOS Routines
	Reference I - DOS Error Codes
	Reference J - Memory Map
	Reference K - ASCII Codes
	Reference L - 6809 Mnemonics
	Reference M - Sample Programs

	Section VI - Program Listing
	Index

