Section i

COMMANDS

Section Il

COMMANDS

This section shows how to use the many
Disk EDTASM commands. Knowing these
commands will help you edit and test your
program.

13

Chapter 4/ Using the DOS Menu
(DOS Commands)

When you first enter DOS, a menu of six DOS com-
mands appear on the screen. Chapter 2 shows how to
use the first two DOS commands. This chapter shows
how to use the remaining commands:

Start Clock Display
® Disk Allocation Map
e Copy Files

e Directory

To use the examples in this chapter, you need to have
the SAMPLE disk files, which you created in Chapter 2,
on the diskette in Drive 0.

Directory

The DOS *“directory” command lets you select the direc-
tory entries you want to see, using three fields: filename,
extension, and drive number.

To select the directory entries, press (6) at the DOS
Menu. Then, press the (1) to move the cursor left or (3
to move right.

Type this line to select all directory entries that have the
filename SAMPLE.

[SAMPLE*#1] : {01 <FILE SPEC

Use the (SPACEBAR) to erase characters. Press (ENTER
when finished. Then, press any key to return to the DOS
menu, and press (6) to return to the directory.

[#%%]

Type this line to select all directory entries with the ex-
tension /BIN:

[x*xxxx%%x%x] [BIN] :[@1 <FILE SPEC
Press (ENTER) when finished. Return to the main menu.

To see all directory entries on the disk in Drive 0, simply
press (ENTER) without specifying a filename or extension:

[ex¥xxxxx] [**%] :[@] <FILE SPEC

Disk Allocation Map

The “disk allocation map” command tells you how much
free space you have on your diskettes. To see the map,
press (4) at the DOS menu.

DOS shows a map of the diskettes that are in each
drive. The map shows how each of the diskette’'s 68
granules is allocated:

e A period (.) means the granule is free.

® An X means all the sectors in the granule are currently
allocated to a file.

® A number indicates how many sectors in the granule
are currently ailocated to a file.

Press any key to return to the DOS menu.

Copy Files

The “Copy Files” command makes a duplicate of a disk
file. To use it, press (5) at the DOS menu. DOS then
prompts you for the hames of the files.

Single-Drive Copy

The first example copies SAMPLE/ASM to another file
named COPY/ASM. Use the (1) and (1) to position the
cursor. Answer the prompts as shown:

Source File Name [SAMPLE 1
Extension [ASM]
Drive g1l

Destination File Name LCaOPY]
Extension [ASM]
Drive [@1]

If Drives are the same are
nsing different diskettes?
(¥ oaor N 7 IN1]

¥ou

15

EDASM

4 / USING THE DOS MENU

When finished, press (ENTER). DOS copies SAMPLE/
ASM to a new file named COPY/ASM and then returns
to the DOS menu. Check the directory (by pressing (6))
and you’ll see that both SAMPLE/ASM and COPY/ASM
are on your diskette.

The next example copies SAMPLE/ASM to another disk-
ette. Answer the prompts as shown:

Source File Name [SAMPLE 1
Extension [ASM]
Drive [@1l

Destimation File Name [COPY]
Extension [ASM]
Drive [@1l

If Drives are the same are vou
using different diskettes?

Y or N)7 LY

Press (ENTER). DOS then prompts you to insert the
source diskette. Press (ENTER) again.

DOS then prompts you for a destination diskette. Insert
the destination diskette and press (ENTER). After copying
the file, DOS prompts you for a system diskette. If you
press without inserting a system diskette, you will
get a SYSTEM FAILURE error.

When finished, it returns to the DOS menu.

Multi-Drive Copy

This example copies SAMPLE/ASM in Drive 0 to SAM-
PLE/ASM in Drive 1. Answer the prompts as shown:

Source File MName [SAMPLE 1
Extension [ASM]
Drive [@1]

Destination File Name [SAMPLE 1
Extension [ASM]
Drive [11]

If Drives are the same are
nsing different diskettes?
(¥ or N7 [N1]

Y ou

Start Clock Display

The Color Computer has a clock that runs on 60-cycle
interrupts. Since the clock skips a second or more when
the computer accesses tape or disk, we recommend that
you not use it while executing a program.

To use the clock, press (3), “Start Clock Display.” Six
digits appear at the upper right corner of your screen.
The first two are hours, the next are minutes, and the
next are seconds. This clock counts the time until you
exit DOS.

16

Chapter 5/ Examining Memory
ZBUG Commands — Part |

To use the Disk EDTASM, you must understand the
Color Computer's memory. You need to know about
memory to write the program, assemble it, debug it, and
execute it.

In this chapter, we’ll explore memory and see some of
the many ways you can get the information you want. To
do this, we’'ll use ZBUG.

if you are not “in” ZBUG, with the ZBUG # prompt dis-
played, you need to get in it now.

EDTASM: Load and run DOS, then execute the
EDTASM program. At the editor’s * prompt, type

Z (ENTER

EDTASMOV: Load and run DOS, then execute the
ZBUG program.

You should now have a # prompt on your screen. This
means you are in ZBUG and you may enter a ZBUG
command. All ZBUG commands must be entered at this
command level. You can return to the command level by
pressing or (ENTER).

Examining a
Memory Location

The 6809 can address 65,536 one-byte memory addres-
ses, numbered 0-65535 ($0000-$FFFF). We'll examine
Address $A000. At the # prompt, type:

B (ENTER
to get into the “byte mode.” Then type:
AGOD/

and ZBUG shows the contents of Address $A000. To
see the contents of the next bytes, press (1). Use () to
scroll to the preceding address.

Continue pressing (1) or (¥). Notice that as you use the
(D the screen continues to scroll down. The smaller
addresses are on the lower part of the screen.

All the numbers you see are hexadecimal (Base 16).
You see not only the 10 numeric digits, but also the 6
alpha characters needed for Base 16 (A-F). Unless you
specify another base (which we do in Chapter 9), ZBUG
assumes you want to see Base 16 numbers.

Notice that a zero precedes all the hexadecimal num-
bers that begin with an alphabetic character. This is
done to avoid any confusion between hexadecimal num-
bers and registers.

Examination Modes

To help you interpret the contents of memory, ZBUG
offers four ways of examining it:

® Byte Mode

¢ Word Mode

e ASCIH Mode

¢ Mnemonic Mode

Byte Mode

Until now, you've been using the byte mode. Typing B
(ENTER), at the # prompt got you into this mode.

The byte mode displays every byte of memory as a num-
ber, whether it is part of a machine-language program or
data.

In this examination mode, the (1) increments the ad-
dress by one. The (1) decrements the address by one.

17

EUTASM

5/ EXAMINING MEMORY

Word Mode

Type to get back to the # prompt. To enter the
word mode, type:

W (ENTER

Look at the same memory address again. Press the ({)
key a few times. In this mode, the (3) increments the
address by two. The numbers contained in each address
are the same, but you are seeing them two bytes or one
word at a time.

Press the (1) a few times. The (1) always decrements
the address by one, regardiess of the examination
mode.

Look at Address $A000 again by typing:
ABBR/

Note the contents of this address “word.” This is the
address where POLCAT, a ROM routine, is stored.

Examine the POLCAT routine. For example, if $A000
contains A1C1, type:

ALCL/

and you'll see the contents of the first two bytes in the
POLCAT routine. We'll examine this routine later in this
chapter using the “mnemonic mode.”

ASCIl Mode

Return to the command level. To enter the ASCII mode,
type:
A (ENTER

ZBUG now assumes the content of each memory
address is an ASCII code. If the “code” is between $21
and $7F, ZBUG displays the character it represents.
Otherwise, it displays meaningless characters or
“garbage.”

Here, the (3) increments the address by one.

Mnemonic Mode

This is the default mode. Unless you ask for some other
mode, you will be in the default mode.

Return to the # prompt. To enter the mnemonic mode
from another mode, type:

M (ENTER
Look at the addresses where the POLCAT routine is

stored. For example, if you found that POLCAT is at
address $A1CH1, type:

ALCL/

Press the (4) a few times. In the mnemonic mode,
ZBUG assumes you're examining an assembly language
program. The (1) increments memory one to five bytes
at a time by “disassembling” the numbers into the mne-
monics they represent.

For example, assume the first two addresses in POL-
CAT contain $3454. $3454 is an opcode for the PSHS
U,X,B mnemonic. Therefore, ZBUG disassembles $3454
into PSHS U,X,B.

Begin the disassembly at a different byte. Press
and then examine the address of POLCAT plus one. For
example, if POLCAT starts at address $A1C1, type:

ALICZ/

You now see a different disassembly. The contents of
memory have not changed. ZBUG has, however, inter-
preted them differently.

For example, assume $A1C2 contains a $54. This is the
opcode for the LSRB mnemonic. Therefore, ZBUG dis-
assembles $54 into LSRB.

To see the program correctly, you must be sure you are
beginning at the correct byte. Sometimes, several bytes
will contain the symbol “?7?”. This means ZBUG can’t
figure out which instruction is in that byte and is possibly
disassembling from the wrong point. The only way of
knowing you'’re on the right byte is to know where the
program starts.

Changing Memory

As you look at the contents of memory addresses, notice
that the cursor is to the right. This allows you to change
the contents of that address. After typing the new con-
tents, press or (3); the change will be made.

To show how to change memory, we'll open an address
in video memory. Get into the byte mode and open
Address $015A by typing:

BREAK) B
215Aa/

Note that the cursor is to the right. To put a 1 in that
address, type:

1 (ENTER

18

If you want to change the contents of more than one
address, type:

D13A/
Then type:
WL EEY)

This changes the contents to DD and lets you change
the next address. (Press the (1) to see that the change
has been made.)

The size of the changes you make depends on the ex-
amination mode you are in. In the byte mode, you wili
change one byte only and can type one or two digits.

In the word mode, you will change one word at a time.
Any 1-, 2-, 3-, or 4-digit number you type will be the new
value of the word.

If you type a hexadecimal number that is also the name
of a 6809 registers (A,B,D,CC,DP,X,Y,U,S,PC), ZBUG
assumes it's a register and gives you an "EXPRESSION
ERROR.” To avoid this confusion, include a leading zero
{OA,0B, etc.)

To change memory in the ASCII mode, use an apos-
trophe before the new letter. For example, here’s how to
write the letter C in memory at Address $015A. To get
into the ASCII examination mode, type:

A

To open Address $015A type:
215A/

To change its contents to a C, type:
'c (D

Pressing the (1) will assure you that the address con-
tains the letter C.

If you are in mnemonic mode, you must change one to
five bytes of memory depending on the length of the
opcode. Changing memory is complex in mnemonic
mode because you must type the opcodes rather than
the mnemonic.

For example, get into the mnemonic mode and open
Address $015A. Type:

M (ENTER
B15A/

To change this instruction, type:
86 (ENTER

Now Address $015A contains the opcode for the LDA
mnemonic. Open location 015B:

2158/
and insert $06, the operand:
?G (ENTER

Upon examining Address $015A again, you'll see it now
contains an LDA #6 instruction.

Exploring the
Computer’s Memory

You are now invited to examine each section of memory
using ZBUG commands to change examination modes.
Use the Memory Map in Reference J.

Don't hesitate to try commands or change memory. You
can restore anything you alter simply by removing the
diskette and turning the computer off and then on again.

19

EJIASM

Chapter 6/ Editing the Program
Editor Commands

The editor has many commands to help you edit your
source program. Chapter 2 shows how to enter a source
program. This chapter shows how to edit it.

To use the edit commands you must return to the editor
from ZBUG:

EDTASM: From EDTASM ZBUG, return to the edi-
tor by typing E

EDTASMOV: From Stand-Alone ZBUG, return to
the DOS menu by typing K (ENTER). Then, execute
the EDTASMOV program.

The screen now shows the editor's = prompt. While in
the editor, you can return to the * prompt at any time by
pressing (BREAK).

This chapter uses SAMPLE/ASM from Chapter 2 as an
example. To load SAMPLE/ASM into the editor, type:

L SAMPLE/ASM (ENTER

Print Command
Prange

To print a line of the program on the screen, type:
P1O0@

To print more than one line, type:
P1a@:130

You will often refer to the first line, last line, and current
line (the last line you printed or inserted). To make this
easier, you can refer to each with a single character:

first line

* last line

° current line (the last line you printed or
inserted.)

To print the current line, type:
P . (ENTER

To print the entire text of the sample program, type:
P#: % (ENTER
This is the same as P050:200 (ENTER).

The colon separates the beginning and ending lines in a
range of lines. Another way to specify a range of lines is
with I. Type:

P# !5 (ENTER

and five lines of your program, beginning with the first
one, are printed on the screen.

To stop the listing while it is scrolling, quickly type:
SHIFD @
To continue, press any key.

Printer Commands
Hrange
Trange

If you have a printer, you can print your program with the
H and T commands. The H command prints the editor-
supplied line numbers. The T command does not.

To print every line of the edit buffer to the printer, type:
ENTER
You are prompted with:
PRINTER READY
Respond with when ready.

The next example prints six lines, beginning with line
100, but without the editor-supplied line numbers. Type:

TiRO!'6
Edit Command

Eline

Hit s %

You can edit lines in the same way you edit Extended

21

6 / EDITING THE SOURCE PROGRAM

COLOR BASIC lines. For example, to edit line 100, type:

E12@ (ENTER

The new line 100 is displayed below the old line 100 and
is ready to be changed.

Press the (SPACEBAR) to position the cursor just after
START. Type this insert subcommand:

IED (ENTER
which inserts ED in the line.
The edit subcommands are listed in Reference A.

Delete Command
Drange

If you are using the sample program, be sure you have
written it on disk before you experiment with this com-
mand. Type:

D112:1490 (ENTER
Lines 110 through 140 are gone.

Insert Command

Istartline, increment

Type:
11522

You may now insert lines (up to 127 characters long)
beginning with line 152. Each line is incremented by two.
(The editor does not allow you to accidently overwrite an
existing line. When you get to line 160, it gives you an
error message.)

Press (BREAK) to return to the command level. Then type:
1200 (ENTER

This lets you begin inserting lines at the end of the pro-
gram. Each line is incremented by two, the last incre-
ment you used.

Type:
BREAK) I (ENTER
The editor begins inserting at the current line.

On startup, the editor sets the current line to 100 and the
increment to 10. You may use any line numbers be-
tween 0 and 63999.

Renumber Command
Nstartline,increment

Another command that helps with inserting lines be-
tween the lines is N (for renumber). From the command
level, type:

N19@ +50 (ENTER

The first line is now Line 100 and each line is in-
cremented by 50. This allows much more room for in-
serting between lines.

Type:
N (ENTER
The current line is now the first line number.

Renumber now so you will be ready for the next instruc-
tion. Type:

N19@ +10 (ENTER

Replace Command
Rstartline,increment

The replace command is a variation of the insert com-
mand. Type:

R12@ +3 (ENTER

You may now replace line 100 with a new line and begin
inserting lines using an increment of three.

Copy Command

Cstartline,range,increment

The copy command saves typing by duplicating any part
of your program to another location in the program.

To copy lines, type:
CS00,100:150 +10 (ENTER

This copies lines 100 to 150 to a new location beginning
at Line 500, with an increment of 10. An attempt to copy
lines over each other will fail.

ZBUG Command

The EDTASM system contains a copy of the stand-alone
ZBUG program. This allows you to enter ZBUG while
your program is still in memory.

EDTASMOYV Users: You need to use the Stand-
Alone ZBUG program, as shown in Chapter 2.

22

To enter ZBUG, type:
Z (ENTER
The # prompt tells you that you are now in ZBUG.

To re-enter the editor from ZBUG, type the ZBUG
command:

E (ENTER

If you print your program, you'll see that entering and
exiting ZBUG did not change it.

BASIC Command
To enter BASIC from the editor, type:

0 (ENTER
If you want to enter DOS from the editor, type:
K (ENTER

Entering DOS or BASIC empties your edit buffer. Re-
entering the editor empties your BASIC buffer.

Write Command
WD filespec

This command is the same one you used in Chapter 2 to
write the source program to disk. It saves the program in
a disk file named filespec. Filespec can be in one of
these forms:

filename/ext:drive
filename.ext:drive

The filename can be one to eight characters. It is
required.

The extension can be one to three characters. It is
optional. If the extension is omitted, the editor assigns
the file the extension /ASM.

The drive can be a number from 0 to 4. It is also option-
al. If the drive number is omitted, the editor uses the first
available drive.

Examples:
WD TEST

saves source file currently in memory as TEST/ASM.
WD TEST/PR1

saves the source file currently in memory as TEST/PR1.

Load Command
LD filespec
LDA filespec

This command loads a source filespec from disk into the
edit buffer. If the source filespec you specify does not
have an extension, the editor uses /ASM.

If you don'’t specify the A option, the editor empties the
edit buffer before loading the file.

If you specify the A option, the editor appends the file to
the current contents of the edit buffer.

Appending files can be useful for chaining long pro-
grams. When the second file is loaded, simply renumber
the file with the renumber command.

Examples:
LD SAMPLE:1

empties the edit buffer, then loads a file named SAM-
PLE/ASM from Drive 1.

LDA SAMPLE/PRO

loads a file named SAMPLE/PRO from the first available
drive, then appends to the current contents of the edit
buffer.

The editor has several other commands. These are
listed in Reference A.

Hints on Writing Your Program

e Copy short programs from any legal source available
to you. Then modify them one step at a time to learn
how different commands and addressing modes work.
Try to make the program relocatable by using in-
dexed, relative, and indirect addressing (described in
Section 1lI).

e Try to write a long program as a series of short
routines that use the same symbols. They will be
easier to understand and debug. They can later be
combined into longer routines.

Note: You can use the editor to edit your BASIC pro-
grams, as well as assembly language programs. You
might find this very useful since the EDTASM editor is
much more powerful than the BASIC editor. You need
to first save the BASIC program in ASCII format:

SAVE filespec, A
Then, load the program into the editor.

23

Chapter 7/ Assembling the Program
(Assembler Commands)

To load the assembler program and assemble the
source program into 6809 machine code, EDTASM (or
EDTASMOV) has an “assembly command.” Depending
on how you enter the command, the assembler:

® Shows an “assembly listing” giving information on
how the assembler is assembling the program.

® Stores the assembled program in memory.
® Stores the assembled program on disk.
@ Stores the assembled program on tape.

This chapter shows the different ways you can control
the assembly listing, the in-memory assembly, and the
disk assembly. Knowing this will help you understand
and debug a program.

The Assembly Command

The command to assemble your source program into
6809 machine code is:

Assembling in memory:
A /IM /switch2/switch3/ . ..
The /IM (in memory) switch is required.

Assembling to disk:
A filespec /switch1/switch2/ . . .

The assembled program is stored on disk as filespec. If
filespec does not include an extension, the assembler
uses /BIN.

Assembling to tape:

A filename /switch1/switch2/ . . .

The assembled program is stored on tape as filename.
The switch options are as follows:

/AO Absolute origin

/M Assemble into memory

/LP Assembler listing on the line printer
/MO Manual origin

/NL No listing

/NO No object code in memory or disk
/NS No symbotl table in the listing

/SR Single record

/S8 Short screen listing

/WE Wait on assembly errors

/WS With symbols

You may use any combination of the switch options. Be
sure to include a blank space before the first switch. If
you omit filespec, you must use the in-memory switch
(/IM).

Examples:
A/IM/WE

assembles the source program in memory (/IM) and
stops at each error (/WE).

A TEST /LP

assembles the source program and saves it on disk as
TEST/BIN. The listing is printed on the printer (/LP).
Note that there must be a space between the filespec
and the switch.

A TEST/PRO

assembles the source program and saves it on disk as
TEST/PRO.

25

7 / ASSEMBLING THE PROGRAM

Q0050

$1200

1205 00060 BEGIN
START

221D 20070
DONE-BEGIN

12035(86 F9 20100 START

LDA #$F9

o409 (0011@}

#5400

B #9120 SCREEN
P K+

2600 20130
#5600

F9 2a149
SCREEN

9F Adeo 20130 WAIT
[$A0QD]

FA 001B6@

WAIT

71 2e17e

$71

9F FFFE 20189
[$FFFE]

121D 00190 DONE
*

2000 00200

TOTAL ERRORS }

1z00
121D

120A

1205
1211

. The location in memory where the assembled code

will be stored. In this example, the assembled code
for LDA#3$F9 will be stored at hexadecimal location
#1200.

. The assembled code for the program line. $86F9 is

the assembled code for LDA #$F9.

3. The program line.
4. The number of errors. If you have errors, you will

want to assemble the program again with the /WE
switch.

. The symbols you used in your program and the

memory locations they refer to.

Figure 1. Assembly Display Listing

26

Controlling the
Assembly Listing

The assembler normally displays an assembly listing
similar to the one in Figure 1. You can alter this listing
with one of these switches:

/SS Short screen listing

/NS No symbol table in the listing
/NL No listing

/LP Listing printed on the printer
For example:

A SAMPLE /NS

assembles SAMPLE and shows a listing without the
symbol table.

If you are printing the listing on the printer, you might
want to set different parameters. You can do this with
the editor’s “set line printer parameters” command:

To use this command, type (at the * prompt):
S (ENTER
The editor shows you the current values for:

o LINCNT — the number of lines printed on each page.
(“line count”)

® PAGLEN — the number of lines on a page. (“page
length”)

® PAGWID — the number of columns on a page. (“page
width”)

® FLDFLG — the “fold flag” (This flag should contain 1
if your printer does not “wrap around.” Otherwise, the
flag should contain 0.)

EDTASMOV PROGRAM

$36D6

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM

STARTS HERE

$3FFF (16K)
$7FFF (32K)

TOP OF RAM

It then prompts you for different values. Check your
printer manual for the appropriate parameters. If you
want the value to remain the same, simply press (ENTER).
For example:

LINCNT=58
PAGLEN=GB6
PAGWID=8¢
FLDFLG=@

sets the number of lines to 58, the page length to 66,
and the page width to 80 columns. You can then assem-
ble the program with the /LP switch:

A SAMPLE /LP

and the assembiler prints the listing on the line printer
using the parameters just set.

In-Memory Assembly
The /IM Switch

The /IM switch causes the program to be assembled in
memory, not on disk or tape. This is a good way to find
errors in a program.

Where in memory? This depends on whether you use
the /IM switch alone or accompany it with an ORG in-
struction, an /AQ switch, or an /MO switch.

Using the /IM Switch Alone

This is the most efficient use of memory. The assembler
stores your program at the first available address after
the EDTASM (or EDTASMOV) program, the edit buffer,
and the symbol table:

EDTASM PROGRAM

$4A2E

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM

STARTS HERE

TOP OF RAM $7FFF (32K)

Figure 2. In-Memory Assembly

27

EJTASM

7 / ASSEMBLING THE PROGRAM

The EDTASM program ends at Address $4A2D. The
EDTASMOV program ends at $36D5.

The edit buffer contains the source program. It begins at
Address $4A2E or $36D6 and varies in size depending
on your program’s length.

The macro table references all the macro symbols in
your program and their corresponding values. (Macros
are described in Chapter 12.) its size varies depending
on how many macros your program contains.

The symbol table references all your program'’s symbols
and their corresponding values. lts size varies depend-
ing on how many symbols your program contains.

Example:

Load the SAMPLE/ASM back into the edit buffer. At the *
prompt, type:

L SAMPLE/ASHM
Delete the ORG line. At the » prompt, type:

D50
Then assemble the program in memory by typing:

A/IM (ENTER

(If you want another look, type A/IM again. You can
pause the display by pressing and continue
by pressing any key.)

Since this sample program uses START to label the be-
ginning of the program, you can find its originating
address from the assembler listing. If you are using
EDTASM, it should begin at Address $4B1E. If you are
using EDTASMOV, it should begin at $37C6.

EDTASMOV PROGRAM

$36D6
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$3800

ASSEMBLED PROGRAM
STARTS HERE

$3FFF (16K)

TOP OF RAM $7FFF(32K)

Using ORG with /IM
for Origination Offset

If you have an ORG instruction in your program and do
not use the AO switch, the assembler stores your pro-
gram at:

the first available address + the value of ORG
Example:
Insert this line at the beginning of the sample program:
EDTASM Systems:

A5 ORG $G000
EDTASMOV Systems:
AT ORG 3800

Then, at the = prompt, type:

A/ IM (ENTER

The START address is now the first available address +
$6000 or $3800. This means that if you have less than
32K (with EDTASM) or less than 16K (with EDTAS-
MOV), the program extends past the top of RAM and
you will get a BAD MEMORY error.

Using IM with /AO for Absolute Origin

The AO switch causes the assembler to store your pro-
gram “absolutely” at the address specified by ORG.

With the ORG instruction inserted, type (at the = prompt):
A/IM/AD
Your program now starts at address $6000 or $3800:

EDTASM PROGRAM

$4A2E
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$6000

ASSEMBLED PROGRAM
STARTS HERE

TOP OF RAM $7FFF (32K)

Figure 3. /AO In-Memory Assembly.

28

_EJiASM

As you can see, the AO switch set the location of the
assembled program only. It did not set the location of the
edit buffer or the symbol table.

If your ORG instruction does not allow enough memory
for your program, you will get a BAD MEMORY error.
The assembler cannot store your program beyond the
top of RAM.

Using /MO with /IM
for Manual Origin

The /MO switch causes your program to be assembled
at the address set by USRORG (plus the value set in
your ORG instruction, if you use one). To set USRORG,
use the editor’s “origin” command.

Before setting USRORG, remove the ORG instruction
from your program. Then, at the » prompt, type:

0 (ENTER
The editor shows you the current values for:
® FIRST — the first hexadecimal address available

EDTASMOV PROGRAM

$36D6
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$3800

ASSEMBLED PROGRAM
STARTS HERE

$3FFF (16K)
TOP OF RAM $7FFF(32K)

® LAST — the last hexadecimal address available

® USRORG — the current hexadecimal value of
USRORG. (On startup, USRORG is
set to the top of RAM.)

It then prompts you for a new vaiue for USRORG. If you
want USRORG to remain the same, press (ENTER).

If you want to enter a new value, it must be between the
FIRST address and LAST address. Otherwise, you will
get a BAD MEMORY error.

EDTASM Systems: Set USRORG to $6050:
USRORG=6050

EDTASMOV Systems: Set USRORG to $3800:
USRORG=2800

After setting USRORG, you can assemble the program
at the USRORG address. Type:

A/IM/MO (ENTER

Your assembled program now starts at Address $6050
or $3800:

EDTASM PROGRAM
$4A2E
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$6050
ASSEMBLED PROGRAM
STARTS HERE
$7FFF (32K)

TOP OF RAM

Figure 4. /MO In-Memory Assembly.

29

7 / ASSEMBLING THE PROGRAM

Disk Assembly

When you specify a filespec in the assembler command,
the assembler saves the assembled program on disk.
You can then load the program from one of these
systems:

e DOS (to run as a stand-alone program)
e ZBUG (to debug with the stand-alone ZBUG program)
e BASIC (to call from a BASIC program)

The program originates at the address you specify in the
ORG instruction.

What address you should use as the originating address
depends upon which of the three systems you will be
loading it into.

Assembling for DOS

Reference J shows the memory map that is in effect
when DOS is loaded. As you can see, DOS consumes
alt the memory up to Address $1200. This means you
must originate the program after $1200 or you will over-
write DOS.

In the sample program, reinsert the ORG $1200
instruction:

S0 ORG $1Z00
and assemble it to disk by typing:
A SAMPLE /SR (ENTER

Note the /SR switch. You must use /SR when assem-
bling to disk a program that you plan to load back into
DOS. This puts the program in the format expected by
DOS.

The assembler saves SAMPLE/BIN to disk with a start-
ing address of $1200. You can now load and execute
SAMPLE/BIN from the DOS menu.

Assembling for Stand-Alone
ZBUG (EDTASMOV Users)

If you plan to use the stand-alone ZBUG for debugging

your program, you need to save the program on disk so
that you can load it into ZBUG.

Reference J also shows the memory map that is in effect
when ZBUG is loaded. As you can see, you must use an
originating address of at least $3800 or you will overwrite
ZBUG. Change the ORG instruction to:

S0 ORG $3800

So that you can test this from ZBUG, without the pro-
gram returning to BASIC, you need to change the ending
of it. First, delete the CLR instruction in Line 170:

Di17@ (ENTER
Then, change the JMP instruction in Line 180 to this:
180 SKI

After making the changes to the program, assembile it to
disk by typing:

A SAMPLE/BUG /WS (ENTER

The assembler saves SAMPLE/BUG on disk with a start-
ing address of $3800. The /WS switch causes the
assembler to save the symbol table also.

Hints On Assembly
¢ Use a symbol to label the beginning of your program.

® When doing an in-memory assembly on a program
with an ORG instruction, you may want to use the /AQ
switch. Otherwise, the assembler will not use ORG as
the program’s originating address. It will use it to
offset (add- to) the loading address.

® The /WE switch is an excellent debugging tool. Use it
to detect assembly errors before debugging the
program.

o [f you would like to examine the edit buffer and symbol
table after an in-memory assembly, use ZBUG to ex-
amine the appropriate memory locations.

30

Chapter 8/ Debugg

ing the Program

(ZBUG Commands — Part Il)

ZBUG has some powerful tools for a trial run of your
assembled program. You can use them to look at each
register, every flag, and every memory address during
every step of running the program.

Before reading any further, you might want to review the
ZBUG commands you learned in Chapter 5. We will be
using these commands here.

Preparing the
Program for ZBUG

In this chapter, we’ll use the sample program from
Chapter 2 to show how to test a program. How you load
the program into ZBUG depends on whether you are us-
ing EDTASM's ZBUG program or the stand-alone ZBUG
program.

EDTASM ZBUG:

If you are using EDTASM, you can use EDTASM’s
ZBUG program.

1. Load SAMPLE/ASM into EDTASM (if it's not already
loaded).

2. So that your program will be in the same area of
memory as ours, change the ORG instruction to:

59 ORG $5800

3. So that you can test the program properly from
ZBUG (without the program returning to BASIC),
you need to change the program’s ending. First, de-
lete the CLR instruction in Line 170:

D179 (ENTER

Then, change the JMP instruction in Line 180 to
this:

180 SWI

4. Assemble the program in memory using the /IM and
/AQ switches. At the * prompt, type:

A/IM/AD (ENTER
5. Enter ZBUG. At the * prompt, type:
Z (ENTER

When the # prompt appears, you're in ZBUG and
can test the sample program.

Stand-Alone ZBUG:

If you are using EDTASMOV, you should use the Stand-
Alone ZBUG.

1. Assemble SAMPLE/BUG to disk as instructed in the
last chapter (“Assembling for Stand-Alone ZBUG").

2. Return to DOS and execute the stand-alone ZBUG
program:

EXECUTE A PROGRAM

PROGRAM NAME E[ZBUG J/BIN
ZBUG loads and displays its # prompt.

3. Load SAMPLE/BUG, along with its symbol table,
into ZBUG. Type:

LDS SAMPLE/BUG (ENTER

When the # prompt appears, you're ready to test the
sample program with ZBUG.

Display Modes

In Chapter 5, we discussed four examination modes.
ZBUG also has three display modes.

We'll examine each of these display modes from the
mnemonic examination mode. If you're not in this mode,
type M (ENTER) to get into it.

EUTASM

8 / DEBUGGING THE PROGRAM

Numeric Mode
Type:
N

and examine the memory addresses that contain your
program: $5800-$5817 for EDTASM’s ZBUG or $3800-
$3817 for Stand-Alone ZBUG.

In the numeric mode, you do not see any of the symbols
in your program (BEGIN, START, SCREEN, WAIT, and
DONE). All you see are numbers. For example, with
EDTASM's ZBUG, Address $580F shows the instruction
BNE 580A rather than BNE SCREEN.

Symbolic Mode
From the command level, type:

S (ENTER

and examine your program again. ZBUG displays your
entire program in terms of its symbols (BEGIN, START,
SCREEN, WAIT, and DONE). Examine the memory
address containing the BNE SCREEN instruction and

type:
3

The semicolon causes ZBUG to display the operand
(SCREEN) as a number (580A or 380A).

Half-Symbolic Mode
From the command level, type:

H (ENTER

and examine the program. Now all the memory addres-
ses (on the left) are shown as symbols, but the operands
(on the right) are shown as numbers.

Using Symbols to
Examine Memory

Since ZBUG understands symbols, you can use them in
your commands. For example, with EDTASM’'s ZBUG,
both these commands open the same memory address
no matter which display mode you are in:

BEGIN/
S800/

Both of these commands get ZBUG to display your en-
tire program:

T BEGIN DONE
T 35800 5817

You can print this same listing on your printer by substi-
tuting TH for T.

Executing the Program

You can run your program from ZBUG using the G (Go)
command followed by the program’s start address:

EDTASM ZBUG: Type either of the following:

GBEGIN (ENTER
G580 0 (ENTER

Stand-Alone ZBUG: Type either of the following:

GBEGIN (ENTER
G380® (ENTER

The program executes, filling all of your screen with a
pattern made up of F9 graphics characters. If you don't
get this pattern, the program probably has a “bug.” The
rest of the chapter discusses program bugs.

After executing the program, ZBUG displays 8 BRK @
5817, 8 BRK @ 3817, or 8 BRK @ DONE. This tells you
the program stopped executing at the SWI instruction lo-
cated at Address DONE. ZBUG interprets your closing
SWI instruction as the eighth or final “breakpoint” (dis-
cussed. below).

Setting Breakpoints

If your program doesn’t work properly, you might find it
easier to debug it if you break it up into small units and
run each unit separately. From the command level, type
X followed by the address where you want execution to
break.

We'll set a breakpoint at the first address that contains
the symbol SCREEN: $580A for EDTASM's ZBUG or
380A for Stand-Alone ZBUG.

EDTASM ZBUG: Type either of the following:

XSCREEN (ENTER
X580A (ENTER

32

Stand-Alone ZBUG: Type either of the following:

XSCREEN (ENTER
X380A (ENTER

Now type GBEGIN to execute the program. Each
time execution breaks, type:

C ENTER

to continue. A graphics character appears on the screen
each time ZBUG executes the SCREEN loop. (The char-
acters appear to be in different positions because of
scrolling.You will not see the first 32 characters because
they scrol! off the screen.)

Type:
D

to display all the breakpoints you have set. (You may set
up to eight breakpoints numbered 0 through 7.)

Type:
Cio

and the tenth time ZBUG encounters that breakpoint, it
halts execution.

Type:
Y

This is the command to "“yank” (delete) all breakpoints.
You can also delete a specific breakpoint. For example:

Yo
This deletes the first breakpoint (Breakpoint 0).

You may not set a breakpoint in a ROM routine. If you
set a breakpoint at the point where you are calling a
ROM routine, the C command will not let you continue.

Examining Registers
and Flags

Type:
R

What you see are the contents of every register during
this stage of program execution. (See Chapter 10 for
definition of all the 6809 registers and flags.)

Look at Register CC (the Condition Code). Notice the
letters to the right of it. These are the flags that are set in
Register CC. The E, for example, means the E flag is
set.

EJUASM

Type:

Y
"

and ZBUG displays only the contents of Register X. You
can change this in the same way you change the con-
tents of memory. Type:

? (ENTER
and the Register X now contains a zero.

Stepping Through
the Program

Type:
BEGIN » Note the comma!

LDA #$F9 is the next instruction to be executed. The
first instruction, JMP START, has just been executed. To
see the next instruction, type:

4 SimpPly a comma

Now, LDA #$F9 has been executed and LDX #$500 is
the next. Type:

R (ENTER

and you'll see this instruction has loaded Register A with
$F9.

Use the comma and R command to continue single-
stepping through the program examining the registers at
will. If you manage to reach the JSR [$A000] instruction,
ZBUG prints:

CAN’T CONTINUE

ZBUG cannot single-step through a ROM routine or
through some of the DOS routines.

Transferring a Block
of Memory
EDTASM ZBUG: Type:
U SB@v Soeo G
Stand-Alone ZBUG: Type:
U 3890 3850 G

Now the first six bytes of your program have been
copied to memory addresses beginning at 5000 or 3850.

8 / DEBUGGING THE PROGRAM

Saving Memory to Disk

To save a block of memory from ZBUG, including the
symbol table, type:

EDTASM ZBUG: PS TEST/BUG 5800
5817 5800 (ENTER

Stand-Alone ZBUG: PS TEST/BUG 3800
3817 3800 (ENTER

This saves your program on disk, beginning at Address
5800 (or 3800) and ending at Address 5817 (or 3817).
The last address is where your program begins execu-
tion when you load it back into memory. In this case, this

address is the same as the start address.

To load TEST/BUG and its symbol table back into
ZBUG, type:

LDS TEST/BUG
Hints on Debugging

e Don't expect your first program to work the first time.
Have patience. Most new programs have bugs. De-
bugging is a fact of life for all programmers, not just
beginners.

® Be sure to make a copy of what you have in the edit
buffer before executing the program. The edit buffer is
not protected from machine language programs.

34

Chapter 9/ Using the ZBUG Calculator
(ZBUG Commands — Part lll)

ZBUG has a built-in calculator that performs arithmetic,
relational, and logical operations. Also, it lets you use
three different numbering systems, ASCIl characters,
and symbols.

This chapter contains many examples of how to use the
calculator. Some of these exampies use the same
assembled program that we used in the last chapter.

Stand-Alone ZBUG: Some of the memory
addresses we use in the examples are too high for
your system. Subtract $1000 from all the hexadeci-
mal addresses and 4096 from all the decimal
numbers.

Numbering System Modes

ZBUG recognizes numbers in three numbering systems:
hexadecimal (Base 16), decimal (Base 10), and octal
(Base 8).

Output Mode

The output mode determines which numbering system
ZBUG uses to output (display) numbers. From the ZBUG
command level, type:

019 (ENTER

Examine memory. The T at the end of each number :

stands for Base 10. Type:

08 (ENTER

Examine memory. The Q at the end of each number
stands for Base 8. Type:

016 (ENTER
You're now back in Base 16, the default output mode.

Input Mode

You can change input modes in the same way you
change output modes. For example, type:

110 (ENTER

Now, ZBUG interprets any number you input as a Base
10 number. For example, if you are in this mode and

type:

T 489152 49162 (ENTER
ZSBUG shows you memory addresses 49152 (Base 10)
through 49162 (Base 10). Note that what is printed on

the screen is determined by the output mode, not the
input mode.

You can use these special characters to “override” your
input mode:

Table 1. Special Input Mode Characters

For example, while still in the 110 mode, type:
T 49152 $C010Q

The “$” overrides the 110 mode. ZBUG, therefore, inter-
prets C010 as a hexadecimal number. As another exam-
ple, get into the 116 mode and type:

T 491527 Co01@ (ENTER

Here, the “T" overrides the 116 mode. ZBUG interprets
49152 as decimal.

35

_EASM

9/ USING THE ZBUG CALCULATOR

Operations

ZBUG performs many kinds of operations for you. For
example, type:

CO@d+25T/

and ZBUG goes to memory address C019 (Base 16),
the sum of C000 (Base 16) and 25 (Base 10). If you
simply want ZBUG to print the results of this calculation,

type:
CO@D+25T=

On the following pages, we'll use the terms “operands,”
“operators,” and “operation.” An operation is any cal-
culation you want ZBUG to solve. In this operation:

1+2=

"*1” and “2"” are the operands. “+” is the operator.

Operands

You may use any of these as operands:.
1. ASCII characters

2. Symbols

3. Numbers (in either Base 8, 10, or 16) — Please note
that ZBUG recognizes integers (whole numbers) only

Examples (Get into the 016 mode):
‘a=

prints 41, the ASCII hexadecimal code for “A”.
START=

prints the START address of the sample program. (It will
print UNDEFINDED SYMBOL if you don’t have the sam-
ple program assembled in memory.)

1530=
prints the hexadecimal equivalent of octal 15.
If you want your results printed in a different numbering

system, use a different output mode. For exampie, get
into the 010 mode and try the above examples again.

Operators

You may use arithmetic, relational, or logical operators.
(Get into the O16 mode for the following examples.)

Arithmetic Operators

Addition +
Subtraction -
Multiplication *
Division .DIV.
Modulus .MOD.
Positive +
Negative -
Examples:

DONE-START=

prints the length of the sample program (not including
the SWI at the end).

9.DIV.2=

prints 4. (ZBUG can divide integers only.)
9,M0OD.,2=

prints 1, the remainder of 9 divided by 2.
1-2=

prints OFFFF,65535T, or 177777Q, depending on which
output mode you are in. ZBUG does not use negative
numbers. Instead, it uses a “number circle” which oper-
ates on modulus 10000 (hexadecimal):

FFFF 0 1

FFFE

FFFD

I minus I

equals 2
FFFF 1

Figure 5. Number Circle lllustration of Memory.

EJIASM

To understand this number circle, you can use the clock
as an analogy. A clock operates on modulus 12 in the
same way the ZBUG operates on modulus 10000.
Therefore, on a clock, 1:00 minus 2 equals 11:00:

0

11:00 1:00

9:00 3:00

I minus I

equals o

11:00 1:00

Figure 6. Number Circle lllustration of Clock.

Relational Operators

+EQU,
+NEQ .,

These operators determine whether a relationship is true
or false.

Equal to
Not Equal to

Examples:
3.EQU.S5=

prints OFFFF, since the relationship is true. (ZBUG prints
65535T in the O10 mode or 177777Q in the O8 mode.)

S.NERQ.S=

prints 0, since the relationship is false.

Logical Operators

Shift o
LogicalAND +AND,
InclusiveOR LOR.
ExclusiveOR +HOR
Complement +NOT,

Logical operators perform bit maniputation on bi-
nary numbers. To understand bit manipulation, see the

6809 assembly language book we referred to in the
introduction.

Examples:
1042=

shifts 10 two bits to the left to equal 40. The 6809 SL
instruction aiso performs this operation.

104-2=

shifts 10 two bits to the right to equal 4. The 6809 ASR
instruction also performs this operation.

+HOR.S=

prints 3, the exclusive or of 6 and 5. The 6809 EOR
instruction also performs this operation.

Complex Operations

ZBUG calculates complex operations in this order:

+ DIV, +MOD.
+AND .

QDRQ QHDR
+ -

+EQU. +NEG .,

You may use parentheses to change this order.

Examples:
4+4,014,2=

The division is performed first.
(4+4).,DIV.2=

The addition is performed first.
4%4,DIV . 4=

The multiplication is performed first.

37

