Lesson

By David W. Ostler

B ! :

16K ECB

, a previous article [September
. 1987, Page 26], 1 covered var-
- iables and some of their uses
in programming. This time I will cover
more of the most used commands that
will help you become good pro-
grammers.

Remember the old saying “Practice
makes perfect”? It is even more true in
programming. If you know about a
command and do not practice it, you
will probably forget about the com-
mand when it’s needed most. Therefore,
try all of these commands at least 10
times, to entrench them in your mind.
Also, remember this series just covers
some of the commands found in the
Color Computer BASIC language, not
the commands pertaining to drawing
and graphics generation. Many pro-
grammers do not program for graphics,
so I concentrated on the commands
common to many of the different BASIC
languages.

My son is able to translate programs
for the Apple and Commodore comput-
ers for use in his school work. Many of
the commands translate directly, with
few exceptions.

REM ()

The apostrophe (°) or REM symbol is
the famous remark statement. It notifies
the computer that all characters follow-
ing the symbol are not commands and
should be ignored by the computer’s
command interpreter.

Use REM statements to place remarks
within the program body itself to embed
programming notes that explain the use
or function of particular portions of a
program. This helps when trying to
debug a program, which is the act of
finding the location of a problem (called
a bug) that has made itself known by
returning a wrong answer or causing the

Dave Ostler is an IC layout designer and
the systems manager for a CAD main-
frame system. He teaches CAD and
electronics at Guilford Technical Com-
munity College. Dave is married and
has three children, Avis, Chuck and
Erik.

January 1988 THE RAINBOW 37

program to crash. It also allows a
programmer to know where various
parts of the program are stored within
the body of the program. This is helpful
when you have various loops within a
program.

This practice is useful for beginners
and for expert programmers who are
working with a very intricate program.

Some programmers prefer to use the
REM statement instead of the apostrophe
symbol. The proper syntax for this
command is 1@ GOTO 5 “THIS LOOP
STARTS THE PROGRAM OVER. The com-
puter recognizes only the GOTO 5 com-
mand and ignores the rest of the line.

Remember that any character you
place in a program will use up memory,
whether it’s a command or remark and
text. So, use remarks only where you
need them, but use them!

CLEAR

The CLEAR command notifies the
command structure that you want to set
up an area of memory reserved for
variable storage. It is normally used as
CLEAR xxxx, where xxxx is the amount
of memory you want to reserve. Or it
can be used as CLEAR xxxx, yyyy,
where xxxx is still the amount of mem-
ory you want to reserve, but yyyy is an
area of memory you desire to protect
from overwriting. The yyyy area is
usually used to protect the BASIC mem-
ory area from any variable storage.

The xxxx figure is usually obtained
by trial and error, until a satisfactory
balance between variable storage and
program area is reached.

Also, when you clear memory within
the body of a program, all variables are
cleared out. All numeric variables will
now equal zero, and all string variables
will have nothing in them after a CLEAR
command is issued. Therefore, it is
normal practice to issue a CLEAR com-
mand early in a program, unless you
want to clear out all variables at a
certain point in a program.

PRINT@

The PRINT@ command makes a pro-
gram appear professional. It orders the
computer to print text or graphics
characters to the screen at the location
desired. For the screen locations that
are available, see your manual for the
PRINTE worksheet page.

Proper syntax is PRINT@ xxx,, where
xxx is a numerical value between 0 and
511. This numerical value directly
relates to the screen location as found
in the PRINT@ worksheet. The com-
mand is usually used as 10 PRINTE

38 THE RAINBOW January 1988

128, “THIS TEXT WILL BE PRINTED”.

This would have been printed at
screen location 128, and the text would
have ended at screen location 152.
Another enhancement of the PRINTE
command is to use it with the CLS
command and to use the semicolon
delimiter. Try this line and see what
result it has:

10 CLS3:PRINTR 227, “THIS
TEXT WILL BE PRINTED”;

The screen would be blue with nor-
mal text starting at screen location 227
and ending at screen location 251. The
only difference between this line and the
other one above is that the screen is blue
with the text centered within the blue
screen. Notice that blue is showing even
after the last character of text is printed.
Take out the semicolon and see what
effect it has on how the line is printed.

Here are tips that will help you center
text on a line:

1) Count the number of characters
you want printed on the line. (Re-
member, a line can be no longer
than 32 characters.)

2) Subtract that number from 32.

3) Take the remainder from Step 2
and divide by 2.

4) Add the amount obtained in Step
3 to whatever screen location line
you want to print that text.

STRINGS

The STRING$ command is used to
create a 1 to 255 character string made
up of the same character. This is useful
when trying to create a title page,
border, etc., to enhance a program’s
appearance.

Proper syntax for this command is
STRINGS (xx,yy), where xx is the
character desired. This character may
be any of the ASCII characters, any of
the graphics characters your computer
can generate for screen use, or any
characters your computer can send to
various output devices, such as disk
drives, printers, tape drives and mo-
dems. The yy value is the number of
characters that you want to create.

SOUND

The SOUND command produces a
tone from the speaker of the television
or monitor. It can be used to notify you
when input is needed or an error has
been detected or made.

The proper syntax for this command
is SOUND x,y, where x is a number
between 1 and 255 and sets the pitch of

the tone. Y is a number between 1 and
255 and sets the length of the tone.

GOSUB

The GOSUB command forces the com-
puter to jump to a defined line, which
contains the desired subroutine, within
the program. This is an unconditional
loop that usually contains conditional
loops nested within it; therefore, they
are also called nested loops. A GOSUB
subroutine must a/ways end with the
RETURN command. This command will
force the computer back to the next
command directly following the GOSUB
command. The only exception is when
the RETURN command is superceded by
a GOTO or IF/THEN command.

The proper syntax for this command
is GOSUBxxxx, where xxxx is the line
number where the subroutine starts.

This command is useful when using
a pause within a program, such as
“Press any key to continue.” You can
place the GOSUB command at the end of
the area where you want to pause the
program. The program can then go to
the subroutine and wait for the key
press. After the key is pressed, it will
return to the program command imme-
diately after the GOSUB command.

Look at Listing 1 for an example of
the GOSUB command.

CHRS

The CHR$ command converts a nu-
merical value to a single character
string. Use this when you want to send
control codes to a software programma-
ble printer or to print graphics charac-
ters to the screen or printer.

The proper syntax for this command
is CHR$ (xxx), where xxx is the numer-
ical value that is converted into a single
character string.

PRINTUSING

The PRINTUSING command prints
the text following it in the format that
was selected. This format is specified by
putting characters behind the PRINT-
USING command. These characters can
be found by looking in your manual
under the PRINT command area.

The proper syntax for this command
is PRINTUSING “$Hfft, g, . g1~
;B.Assume a value of one million for
the integer variable B. This particular
format will print the integer variable
B in the format of $1,000,000.00.
Or, for a value of 10,000 for B, it will
print $10,000.00. Note that no matter
what the value is, it will be printed with
two decimal places to the right of the
period, and the dollar sign printed 12

spaces to the left. The commas will only
be printed when the value is great
enough to warrant it.

This command is useful when you
want to print a numerical value or
character string in a particular fashion.
One use for the PRINTUSING command
would be in a program that prints values
in dollars and cents.

IF/THEN

The IF/THEN command tests varia-
bles to see if various conditions have
been met. In standard BASIC the syntax
is IF/THEN GOTO. But the Color Com-
puter BASIC can shorten it by leaving off
the GOTO command because it is as-
sumed by the command interpreter.

Proper syntax is IF X =Y THEN 1000;
when variable x equals the value of
variable y, then the program will be
forced to jump to Line 1000.

When multiple comparisons are to be
made, you can use the ELSE command.
The proper syntax for this use is IF X
=Y THEN 1000 ELSE 2000 or IF X =Y
THEN 1000 ELSE IF Y = 2 THEN 5000
ELSE. ... When x equals the value of
y, then force a jump to Line 1000, or else
force a jump to Line 2000.

You can see that you can compare

Clearbrook

many different variables within a com-
mand line and keep memory require-
ments to a minimum.

Looking at Listing 1

Line 10 clears the screen, moves the
cursor down two lines and prints the
text.

Line 15 forces the program to go to
the subroutine located at Line 1000.

At Line 1000, the cursor is moved
down the screen four more lines, and the
text “PRESS ANY KEY TO CONTINUE” is
then printed.

At Line 1010, string variable B$ is set
equal to the key pressed. Only in this
instance we want a key to be pressed to
continue the program, and we don’t
care which key. If no key is pressed, this
line will be repeated by the IF/THEN,
ELSE command directly following the
INKEY$ command. (Note that IF~/
THEN, ELSE is a variation on the IF~
THEN command. The ELSE command
helps shorten up the command line so
that multiple comparisons can be made.

Looking at Listing 2

Line 0 is a remarked line.

Line 5 clears 1,000 bytes of memory
for variable storage, clears the screen

and prints the text at the specified
locations.

Line 10 prints text at the location,
allows the input of variable A and
sounds a tone.

Line 20 prints a string of blanks at the
location to clear out the previous text;
then it prints new text at the same
location, allows the input of variable B
and sounds a tone.

Line 30 forces the program to go to
the subroutine located at Line 1000.

Lines 100 to 130 all sound a tone,
perform mathematical manipulation of
variables A, B and C, then force a jump
to Line 500.

Line 140 sounds a tone and jumps to
Line 700.

Line 200 prints a string of blanks at
the location to clear out the previous
text, then prints new text at the same
location, allows the input of variable B
and sounds a tone.

Line 305 forces the program to go to
the subroutine located at Line 2000.

Lines 310 to 340 all sound a tone,
perform mathematical manipulation of
variables A, B and C, then force a jump
to Line 500.

Line 350 sounds a tone and forces a
jump to Line 700.

(604)853-9118

cated file-intensive applications.

e Interactive access to data-
bases and quick queries.

o CSG IMS includes a recur-
sive compiled language sup-
porting program modules
with full parameter passing.

CSG IMS demo with manual

0 Information
! Management Ramsow
I ‘ \b System

CSG IMS is THE full featured relational database
manager for the Color Computer and OS9. The com-
prehensive structured application language makes
CSG IMS the ideal developement tool for sophisti-

e User defined screen and
report formats.

e Record, index and file size al-
most unlimited.

e Text, BCD floating point (14
digits), short and long in-
teger and date types.

CSG IMS for CoCo2/3 0OS9 L1/2 (single user)$169.95

CSG IMS for OS9 L2 or 68000(multi user)

ERINA - Symbolic Uéer Mode Debugger for OSQ

ERINA is a must for all serious assembler and C
software developers. It lets you find bugs quickly by
displaying the machine state and instuctions being ex-
ecuted. You can set address and register break
points, dump, search and change memory, assemble
and disassemble code and many other things to
numerous to mention. This program will pay for itself
over and over by the time you save solving your bugs.

Requires 80 column display, OS9 L1/2

$69.00

SERINA - System Mode Debugger for 0S9 L2

$495.00
$30

SERINA is a debugger for OS9 system modules
(device drivers, file managers, etc.). It allows you to
trace execution of any system module, set break
points, assemble and disassemble code and examine
and change memory. There are special provisions for
executing code with critical timing loops and for ac-
cessing |/O registers. A must for system programmers.
Requires CoCo03, 0S9 L2,

80 col. terminal connected to /T1 or /T2

$139.00

Shipping: N. America - $5, Overseas - $10

Clearbrook Software Group

P.O. Box 8000-499
Sumas, WA 98295

0OSg is a trademark of Microware Systems Corp., MSDos is a trademark of Microsoft Corp.

MSF - MSDos File Manager for CoCo 3/0S9 Level 2
MSF is a file manager which allows you to use MSDos
disks directly under OS9. You don’t have to change
the format of the data before using it!
Requires CoCo 3, OS9 L2, SDISKS3 driver

$45.00

January 1988 THE RAINBOW

39

Line 500 clears the screen and prints
text at the specified location.

Line 510 sets up a FOR/NEXT com-
mand loop and sets a value for Integer
B. Note that the loop will count to five
before going on to another part of the
program.

Lines 520 to 590 first print graphics
characters at the locations specified,
then set up a timing loop so the graphics
character will be displayed for a desired
amount of time before the next charac-
ter. See your manual for the characters
that can be printed to the screen.

Line 600 sounds a tone and informs
the FOR/NEXT command set up in Line
510 that the next value of B should be
counted.

Line 610 clears the screen, sounds a
tone and prints text at the location;
immediately following the text, the
integer variable C is printed out in the
format set up by the PRINTUSING com-
mand.

Line 620 forces the program to jump
to Line 300.

Line 700 clears the screen, prints text
at the location, allows the input of
variable A, sounds a tone and forces a
jump to Line 20.

Lines 1000 to 1070 comprise a sub-
routine that prints text at various
locations. They then use the INKEY$ to
determine which key has been pressed
and send the program to the appro-
priate line to perform the proper math-
ematical manipulation. These lines are
100 to 130.

Lines 2000 to 2070 make up a subrou-
tine that prints text at various locations,
then uses the INKEY$ to determine
which key has been pressed and send the
program to the appropriate line to
perform the proper mathematical ma-

Programming Exercises

Utilizing the methods presented,
write a program that allows you to enter
your name, street address, city, state
and ZIP. This program should also
allow you to call a subroutine that
prints up a menu that lets you recall
each variable entered in turn.

Note: Use the commands found in
this series to dress up your program any
way you want. Feel free to experiment
and have fun trying new things. A good
way to learn new methods of program-
ming is to find a program in which you
like the way something is done, and
examine the program to see how it is put
together.

(See Page 174 for a possible solution
1o this exercise.)

Hints and Tips

When you program, you will find
shortcuts to entering loops and varia-
bles. Each character within a program
takes up memory in your computer,
even the line numbers and spaces in the
program. The overhead that the pro-
gram uses cannot be eliminated. There-
fore, you can minimize memory usage

nipulation. These lines are 310 to 340.
(Questions or comments regarding
this tutorial may be directed to the
author at 901 Ferndale Blvd., High
Point, NC 27260. Please enclose an
SASE when writing for a reply.) a

by combining lines. That will result in
fewer line numbers and, therefore, a
smaller program.

- When programming, always number
your lines in increments of 10 or 100 so
that if you need to edit the program you
can do so without changing the pro-

- gram flow drastically. Nothing puts a

damper on programming like having to
rewrite a program because you num-
‘bered the lines 1, 2, 3, 4 and 5 instead
of 10, 20, 30, 40 and 50, which would
allow plenty of room to make enhance-
ments.

When you want to print one charac-
ter string or text immediately following
another character string or text; you
must place a semicolon directly after the
string value or text.

This short program will print the text
in this manner;

THIS IS 1.2, 3

10 CLS:PRINT“THIS IS 1,”;:

20 PRINT”2, s

30 PRINT“3.”

40 END J

Listing 1: GOSUB

15 GOSUBlg@g

14 CLS:PRINT:PRINT"THIS IS AN EX n
AMPLE OF THE GOSUB COMMAND.
ASE NOTE THAT THIS IS LINE 1g."

PLE
ND

45 FORX=1TOlg@@STEPLl:NEXTX:CLS:E

1¢¢@ PRINT:PRINT:PRINT:PRINT" P

2¢ CLS:PRINT:PRINT"THIS IS THE S
ECOND PART OF THE GOSUB COMMAND
PLEASE NOTE THAT THIS IS NOW L
INE 208."

25 GOSUBl@ggg

3¢ CLS:PRINT:PRINT"THIS IS THE T

HIRD PART OF THE GOSUB COMMAND
PLEASE NOTE THAT THIS IS NOW L
INE 2@. ALSO NOTE THAT THIS IS
THE LAST PART OF THIS DEMO ALS
O YOU MAY DO THIS TYPE OF THING
MANY, MANY TIMES. USING THE SAM
E GOSUB AREA."

35 GOSUBl@gg

4% CLS:PRINT:PRINT:PRINT:PRINT:P

RESS ANY KEY TO CONTINUE"

1919 A$=INKEYS:IFAS=""THEN1@1gEL
SE1929

1929 RETURN

Listing 2: COCOCALC

g 'THE COCO CALCULATOR HAS BEEN
WRITTEN TO DEMONSTRATE COMMANDS.
THIS PROGRAM IS TO BE USED WITH
THE BASIC PROGRAMMING COURSE
WRITTEN BY DAVID W. OSTLER, COPY
RIGHT 1987

5 CLEAR1@g@@:CLS:PRINT@32,"WELCOM

RINT" THIS DEMO IS ENDED. REBOO E TO THE COCO CALCULATOR":PRINTQ@
TING TO BASIC AT THIS TIME. 96," PLEASE ENTER AMOUNTS YOU WA
40 THE RAINBOW January 1988

NT THE CALCULATOR TO WORK ON
1§ PRINT@224,"FIRST AMOUNT";:INP
UTA:SOUND2g@, 1

2§ PRINT@224,STRINGS (28,32) : PRIN
T@224,"NEXT AMOUNT" ; : INPUTB:SOU
ND2gg, 1

3¢ GOSUBlgpg

188 SOUND2@@,2:C=A+B:GOTO50P

11p SOUND2@g,2:C=A-B:GOTO509

12@ SOUND2@@,2:C=A*B:GOTO50p

13¢ SOUND2@@,2:C=A/B:GOTO5@0

148 SOUND2@@,2:GOTO7 2%

3¢@ PRINT@224,STRINGS (20,32) :PRI
NT@224,"NEXT AMOUNT" ; : INPUTB: SO
UND2@g, 1

3¢5 GOSUB2@gP

31¢ SOUND2@@,2:C=C+B:GOTO50p

32¢ SOUND2@f@,2:C=C-B:GOTO500

339 SOUND2@@,2:C=C*B:GOTO50f

34¢ SOUND2@@,2:C=C/B:GOTO50p

35¢ SOUND2@@,2:GOTO728

5¢% CLS:PRINT@141,"WORKING"

51¢ FORB=1TOS5STEP1

52¢ PRINT@236,CHRS (162) ; : PRINTE@2
43,CHRS (161)

53¢ FORX=1TOS5@STEPI1:NEXT

54¢ PRINT@236,CHR$(168) ;: PRINT@2
43,CHR$ (164)

550 FORX=1TO5@STEPI1:NEXT

568 PRINT@236,CHRS (164) ; : PRINT@2
43,CHRS$ (168)

57¢ FORX=1TO5@STEP1:NEXT

58¢ PRINT@236,CHRS (161) ; : PRINT@2
43,CHRS (162)

599 FORX=1TO5@STEP1:NEXT

6¢@ SOUND199,1:NEXTB

61§ CLS:SOUND2@,5:PRINT@64,"TOTA
L EQUALS:";:PRINTUSING"S###, ###,
###.#4";C

620 GOTO3gP

7¢@# CLS:PRINT@224,"FIRST AMOUNT"
; ¢t INPUTA : SOUND2g@, 1: GOTO20

1¢¢p PRINT@297,"DO YOU WANT TO"
1919 PRINT@33@," (A)DD"

1929 PRINT@362," (S)UBTRACT"

1¢3¢ PRINT@394," (M)ULTIPLY"

1¢4¢ PRINT@426," (D) IVIDE"

1§59 PRINT@458," (E)ND"

19608 G$=INKEYS:IFGS$=""THEN1@6gEL
SEIFG$="A"THEN1@@ELSEIFG$="S"THE
N11gELSEIFGS$="M"THEN12gELSEIFGS=
"D"THEN13@ELSEIFGS$="E"THEN14@ELS
E1p69
1979
2009
2010
2020
2030
2040

RETURN

PRINT@297,"DO YOU WANT TO"
PRINT@33@," (A)DD"
PRINT@362," (S) UBTRACT"
PRINT@394," (M) ULTIPLY"
PRINT@426," (D) IVIDE"

2959 PRINT@458," (E)ND"

2068 G$=INKEYS:IFGS$=""THEN2@6QEL
SEIFG$="A"THEN31@ELSEIFG$="S"THE
N32@ELSEIFGS$="M"THEN33gELSEIFGS=
"DUTHEN34PELSEIFG$="E"THEN35@ELS

E2069

2§78 RETURN A

Mouse Tales By Logan Ward

“| cannot imagine the CoCo 3 without ADOS-3;
it would not be a complete machine.”
The RAINBOW, July 1987

You've moved up to a CoCo 3. A powerful new machine. Now, it's time to
give BASIC a shot in the arm, with ADOS-3. Wouldn't it be nice to turn on your
machine and be greeted by an 80-column display. in the colors of your
choice, with your own custom startup message? To run routinely at 2 MHz
(double speed) without having to slow down for disk and printer operations?
This and much, much more is possible with ADOS-3, our CoCo 3 adaptation
of the acclaimed original ADOS, which shares the original’s virtual 100%
compatibility with commercial software. After customizing ADOS-3 using the
provided configuring utility, you can have it burned into an EPROM that plugs
into the Disk BASIC ROM socket, or just use it in RAM as a disk utility. (EPROM
+ burning will cost $15-20; we provide information concerning how you can
have this done.) Supports double-sided drives (35, 40, or 80 tracks). FAST and
SLOW commands, auto lire number prompts, RUNM command, keystroke
macros, arrow-key scroll through BASIC programs, auto-edit of error line, and
many more valuable features.

“ON A SCALE OF 1 TO 10, | RATE ADOS-3 A SOLID 45." RAINBOW, 7/87
Disk . . . $34.95 Original ADOS for CoCo1or2 . . . $27.95 (See 6/87 RAINBOW review)

Original ADOS plus ADOS-3

THE PEEPER

ML program tracer that multitasks with the target program. An excellent
learning tool for the ML novice: an invaluable debugging aid for the expert.
CoCo 1, 2, or 3 compatible.

Disk . . . $23.95 Assembler source listing . . . Add $3.00

MONITOR CABLES for CoCo 3

Magnavox 8CM515/8CM505/8CM643 . . . $19.95 Sony KVA341CR . . . $29.95

Suite A108

PECTROSYSTEMS
@)

Miami, Florida 33176
(305) 274-3899Day or Eve

11111 N, Kendall Drive,

No delay on personal checks ® Please add $2.00 shipping @ Sorry no credit cards or COD's

January 1988 THE RAINBOW

et

